

The Variability Exchange Language

Version 1.0

Project SPES_XT

Responsible Daimler AG

QA-Responsible

Authors Martin Große-Rhode, Fraunhofer FOKUS
Michael Himsolt, Daimler AG
Michael Schulze, pure·systems

Created 16 May 2013

Last Changed 17 December 2015

Confidential Level Confidential for Partners: <Partner1>; <Partner2>; …

 Open to Project

X Public

Document Status In Progress

X Provided

 Released

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 2/87

List of Changes

Change
Changed
Chapter

Description of Change Author State

Nr. Date Version

1 16 May 2013 0.5 All Copied from previous document

2 January 2015 0.9 All Prepared for review

3 5 March 2015 1.0 All Prepared for inclusion in document

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 3/87

Table of Contents

1 Abstract ... 9

2 Introduction .. 10

2.1 Variants Management, System Variability, and Variation Points 10

2.2 Variability View and Variants Management Tools 11

3 Overview of the Variability Exchange Language ... 13

3.1 VariationPoints and Variations ... 15

3.2 Variation Point Descriptions versus Variation Point Selections 16

3.3 Binding ... 16

3.4 Common Concepts ... 16

3.5 API ... 16

4 Variability Exchange Language Class Reference .. 18

4.1 ArtifactElement < artifact-element-type> .. 19

4.2 BindingTime <bindingtime-type> .. 21

4.3 BindingTimeEnum <bindingtime-enum> .. 24

4.4 CalculatedParameterVariationPoint <calculated-parameter-

variationpoint-type> ... 27

4.5 CalculatedVariation <calculated-variation-type> 29

4.6 Capability <capability-type> .. 31

4.7 Expression <expression-type> .. 33

4.8 ExpressionTypeEnum <expression-enum> ... 38

4.9 Identifiable <identifiable-type> .. 39

4.10 KeyValuePair <key-value-pair-type> ... 42

4.11 OptionalStructuralVariationPoint <optional-structural-variaton-

point-type> .. 44

4.12 OptionalVariation <optional-variation-type> 46

4.13 ParameterVariationPoint <parameter-variationpoint-group> 48

4.14 SpecialData <special-data-type> .. 50

4.15 StructuralVariationPoint <structural-variationpoint-group> 52

4.16 ValueVariation <value-variation-type> .. 54

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 4/87

4.17 VariabilityAPI .. 57

4.18 VariabilityExchangeModel <variability-exchange-model-type> 59

4.19 VariabilityExchangeModels <variability-exchange-models-type>

 62

4.20 VariabilityAPITypeEnum <variability-api-enum> 64

4.21 Variation <variation-type> .. 65

4.22 VariationPoint <variationpoint-type> ... 68

4.23 VariationPointHierarchy <variationpoint-hierarchy-type> 70

4.24 VariationDependency <variation-dependency-type> 73

4.25 VariationDependencyEnum <variation-dependency-enum> 76

4.26 XorParameterVariationPoint < xor-parameter-variationpoint-

type> ... 77

4.27 XorStructuralVariationPoint <xor-structural-variationpoint-

type> ... 79

4.28 XorVariation <xor-variation-type> .. 81

5 Example: Importing into pure::variants .. 84

6 Bibliography ... 87

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 5/87

List of Figures

Figure 1 Use case for the Variability Exchange Language .. 12

Figure 2 An Overview of the Variability Exchange Language .. 14

Figure 3 UML Diagram for class ArtifactElement .. 19

Figure 4 UML Diagram for class BindingTime ... 21

Figure 5 UML Diagram for enumeration BindingTimeEnum ... 24

Figure 6 UML Diagram for class CalculatedParameterVariationPoint .. 27

Figure 7 UML Diagram for class CalculatedVariation .. 29

Figure 8 UML Diagram for class Capability .. 31

Figure 9 UML Diagram for class Expression .. 33

Figure 10 UML Diagram for class ExpressionTypeEnum ... 38

Figure 11 UML Diagram for class Identifiable ... 39

Figure 12 Use of identifiable-type in the XML Schema ... 40

Figure 13 UML Diagram for class KeyValuePair ... 42

Figure 14 XML Schema for key-value-pair-type .. 42

Figure 15 XML Example for key-value-pair-type ... 42

Figure 16 UML Diagram for class OptionalStructuralVariatonPoint ... 44

Figure 17 UML Diagram for class OptionalVariation ... 46

Figure 18 UML Diagram for class ParamaterVariationPoint ... 48

Figure 19 UML Diagram for class SpecialData ... 50

Figure 20 XML Schema for special-data-type ... 50

Figure 21 XML Example for special-data-type .. 50

Figure 22 UML Diagram for class StructuralVariationPoint .. 52

Figure 23 UML Diagram for class ValueVariation .. 54

Figure 24 UML Diagram for class VariabilityAPI .. 57

Figure 25 UML Diagram for class VariabilityExchangeModel ... 59

Figure 26 UML Diagram for class VariabilityExchangeModels .. 62

Figure 27 UML Diagram for class VariabilityAPITypeEnum ... 64

Figure 28 UML Diagram for class Variation ... 65

Figure 29 XML Schema for variation-type .. 66

Figure 30 UML Diagram for class VariationPoint .. 68

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 6/87

Figure 31 UML Diagram for class VariationPointHierarchy ... 70

Figure 32 UML Diagram for class VariationDependenxy... 73

Figure 33 UML Diagram for class VariationDependenyEnum ... 76

Figure 34 UML Diagram for class XorParameterVariationPoint .. 77

Figure 35 UML Diagram for XorStructuralVariationPoint ... 79

Figure 36 UML Diagram for XorVariation .. 81

Figure 37 pure::variants model for the Automotive SPES Demonstrator from Listing 46. 85

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 7/87

List of Listings

Listing 1 XML Schema for artifact-element-type ... 19

Listing 2 XML Example for artifact-element-type using URIs .. 19

Listing 3 XML Example for artifact-element-type using artifact-specific XML elements 19

Listing 4 XML Schema for bindingtime-type ... 21

Listing 5 XML Example for binding-time-type in a variationpoint-configuration . 21

Listing 6 XML Example for binding-time-type in a variationpoint-configuration . 22

Listing 7 XML Schema for bindingtime-enum ... 24

Listing 8 XML Schema for calculated-parameter-variationpoint-type 27

Listing 9 XML Example for calculated-parameter-variationpoint-type 28

Listing 10 XML Schema for calculated-variation-type .. 29

Listing 11 XML Example for calculated-variation-type .. 30

Listing 12 XML Schema for capability-type ... 31

Listing 13 XML Example for capability-type .. 31

Listing 14 XML Schema for expression-type ... 33

Listing 15 XML Example for expression-type .. 33

Listing 16 XML Schema for expression-enum ... 38

Listing 17 XML Schema for identifable-type ... 39

Listing 18 XML Example for identifable-type (id attribute) ... 39

Listing 19 XML Schema for optional-structural-variaton-point-type 44

Listing 20 XML Example for optional-structural-variaton-point-type 45

Listing 21 XML Example for optional-structural-variaton-point-type with multiple

variations ... 45

Listing 22 XML Schema for optional-variation-type .. 46

Listing 23 XML Example for optional-variation-type ... 47

Listing 24 XML Schema for parameter-variationpoint-group .. 48

Listing 25 XML Schema for structural-variationpoint-group ... 52

Listing 26 XML Schema for value-variation-type.. 54

Listing 27 XML Example for value-variation-type .. 55

Listing 28 XML schema for variability-exchange-model-type.. 59

Listing 29 XML example for variability-exchange-model-type .. 60

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 8/87

Listing 30 XML Schema for variability-exchange-models-type 62

Listing 31 XML example for variability-exchange-models-type 62

Listing 32 XML Schema for variability-api-type-enum .. 64

Listing 33 XML example for variability-api-type-enum .. 64

Listing 34 XML Schema for variationpoint-type .. 68

Listing 35 XML Schema for variationpoint-hierarchy-type .. 70

Listing 36 XML Example for variationpoint-hierarchy-type ... 71

Listing 37 XML Schema for variation-dependency-type .. 73

Listing 38 XML example for variation-dependency-type .. 74

Listing 39 XML Schema for variation-dependency-enum .. 76

Listing 40 XML Schema for xor-parameter-variationpoint-type 77

Listing 41 XML Example for xor-parameter-variationpoint-type 78

Listing 42 XML Schema for xor-structural-variationpoint-type 79

Listing 43 XML Example for xor-structural-variationpoint-type 80

Listing 44 XML Schema for xor-variation-type .. 81

Listing 45 XML Example for xor-variation-type ... 82

Listing 46 The Automotive SPES Demonstrator as a Variability Exchange Language document 84

Listing 47 A sample XML file illustrating various features of the Variability Exchange Language 86

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 9/87

1 Abstract

The purpose of the Variability Exchange Language is to support the information ex-

change among variants management tools on the one hand and systems development

tools on the other hand. The essential tasks of a variants management tool are to

represent and analyze the variability of a system abstractly and to define system con-

figurations by selecting the desired system features. A system development tool cap-

tures information of a specific kind, such as requirements, architecture, component

design, or tests. In order to support the development of variable systems a develop-

ment tool either has to offer the capability to express and deal with variability directly,

or an adaptor must be provided that adds this capability to the development tool.

To interconnect variants management with systems development the information ex-

change among the corresponding tools must be established. A variants management

tool must be able to read or extract the variability from a development tool and to pass

a configuration, i.e. a set of selected system features, to the development tool. Up to

now the interfaces that support this information exchange are built for each develop-

ment tool anew. With a standardized Variability Exchange Language a common inter-

face can be defined that is implemented by the development tools and used by the

variants management tools. The integration of variants management tools with sys-

tems development tools via this interface enables a continuous development process

for variable systems and supports a flexible usage of tools for this process.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 10/87

2 Introduction

2.1 Variants Management, System Variability, and Variation

Points

Variants management is an activity that accompanies the whole system development

process and, therefore, is orthogonal to the other development tasks. Like safety, se-

curity, and other system properties, variability cannot be built into a system at the end

of the process. Rather, the desired variability has to be determined, analyzed, de-

signed, implemented and tested continuously, starting at the very beginning of the pro-

cess through to the final delivery of the system or the system variant respectively. That

means that within each development stage – requirements analysis, design, imple-

mentation, test, documentation, etc. – variability is an aspect that has to be considered.

We consider as variable system a system that can be tailored by the system producer

according to individual clients’ needs. All variants of a variable system are developed

within one development process. In addition to the standard development tasks the

process must also provide the means to tailor the system, i.e. to derive the client spe-

cific variant of the system. This may happen at different stages, also known as (vari-

ance) binding times.

Variability is embodied in variation points. Consider as example a requirements docu-

ment. A requirement toward a variable system may be optional. In this case two system

variants can be formed by either selecting or deselecting the requirement. A set of

requirements may be alternatives, then each selection of one of these requirements

forms one system variant. Finally a requirement may contain a parameter, then each

value that can be selected for this parameter yields a system variant.

The same definition of variation points holds for all other artifacts that are created in

the development process – be it analysis or design models such as the views defined

in the SPES-XT meta model, test specifications, code, documentation, or whatever. In

each artifact there may be optional elements, alternative elements, and parameterized

elements.

We do not specify here how these variation points are represented in the artifacts.

Some artifact formats support the definition of variation points, in other cases appro-

priate means have to be added. This obviously also has an impact on the tools that

are used to create and manage the artifacts. In some cases they are capable to ex-

press variation points. In other cases adaptors have to be built in order to incorporate

variation points.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 11/87

2.2 Variability View and Variants Management Tools

It is an accepted best practice to define an explicit abstract variability view on a system

under development to support variants management continuously throughout the pro-

cess. This abstraction contains the bare information on the variability of the system.

That means that it describes which variants exist, but does not describe how the vari-

ability is realized. The variability information is derived from an analysis of the com-

monalities, differences, and dependencies of the system’s variants and is often repre-

sented as a feature model.

A variants management tool supports the creation of an artifact – a variability model –

that represents the abstract variability information. Moreover, it offers operations to

select or deselect system features and via this feature configuration to specify the sys-

tem’s variants.

The information of the variability view has to be connected with the system develop-

ment artifacts in order to define how the feature selection (system configuration) de-

termines the resolution of the variation points within these artifacts, i.e. the selection of

a variation for each variation point. As soon as these connections are established a

feature configuration can be carried over to a configuration of the variation points of

the concerned artifact. The technical realization of this connection is addressed by the

Variability Exchange Language.

At present there is no standard that would define how variation points are expressed

in different artifacts. That means that a tool supplier who builds a variants management

tool has to implement an individual interface to each other tool that is used in a devel-

opment process to create the corresponding artifacts. The purpose of the Variability

Exchange Language is to support the standardization of these interfaces by a common

exchange format that defines which information is exchanged between a variants man-

agement tool and a tool that is used to manage a specific kind of artifacts in a devel-

opment process. As mentioned above, such a tool may either be a tool that already

supports the definition of variation points for the concerned artifact type, or it may be

an adaptor that adds this capability to a base tool.

In fact, the Variability Exchange Language defines a requirement on tools or tool adap-

tors that intend to support variants management. Such a tool has to be able to extract

the data that is defined in the Variability Exchange Language from the artifact that it

manages and to incorporate the data that is sent from the variants management tool

into this artifact. Beyond the exchange format, i.e. the contents of the information that

is exchanged, also some basic operations are defined here. They define in which di-

rection the variability information is intended to flow.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 12/87

Figure 1 Use case for the Variability Exchange Language

A use case for the Variability Exchange Language can be defined as follows. Assume

an artifact with variation points is given, for instance an artifact created with tool A in

Figure 1. First the development tool has to collect the data defined in the Variability

Exchange Language, essentially given by the variation points contained in the artifact.

It passes this data to the variants management tool that builds a variability model based

on the data. The variability model can be used to define a system configuration by

selecting the desired system features. The corresponding data, i.e. the configuration,

formatted according to the Variability Exchange Language, is passed back to the de-

velopment tool or adaptor that uses this data to create or derive an artifact variant that

corresponds to the system variant defined in the variants management tool.

Applying this scenario to all development tools and artifacts yields a consistent set of

development artifacts for any system variant automatically. The variation points that

correspond to customer relevant system features should coincide in all artifacts, i.e.

they always induce the same variability model in the variants management tool. In

addition to that there may also be internal variation points, for instance implementation

variants that do not alter the visible properties of the system but are relevant for the

system construction process. These variation points give rise to a staged variability

model in which customer features are separated from internal features.

Since the system configuration is built once and for all in the variants management tool

an identical configuration is passed to all development tools and thereby ensures con-

sistency of the variants selection. It might only happen that internal features for in-

stance are not interpreted by some development tool because it is not concerned with

internal decisions, such as a requirements document or a system test.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 13/87

3 Overview of the Variability Exchange Language

The core of the Variability Exchange Language is given by the definition of variation

points and their variations – by the classes VariationPoint and Variation (see Figure 2).

In the following we immediately use the class names from the meta-model presented

in Chapter 4 to discuss the corresponding concepts, such as VariationPoint and

Variation. This chapter gives a survey on the main classes, in particular the ones

shown in Figure 2.

A detailed specification of all classes is provided in Chapter 4.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 14/87

Figure 2 An Overview of the Variability Exchange Language

A Variability Exchange Language document starts with a VariabilityExchangeModels

element, which contains a number of VariabilityExchangeModel elements. Each

VariabilityExchangeModel corresponds to one (or possibly several, but this is imple-

mentation dependent) artefacts with variable elements.

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

OptionalVariation

+ condition :Expression [0..1]

Identifiable

VariabilityExchangeModel

+ type :VariabilityAPITypeEnum {readOnly}

+ uri :UniformResourceIdentifier [0..1] {readOnly}

StructuralVariationPoint ParameterVariationPoint

OptionalStructuralVariationPoint XorStructuralVariationPoint

XorVariation

+ condition :Expression [0..1]

CalculatedParameterVariationPoint XorParameterVariationPoint

ValueVariation

+ condition :Expression [0..1]

+ value :String

CalculatedVariation

+ expression :Expression [0..1]

Identifiable

VariationDependency

+ type :VariationDependencyEnum

+ condition :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariabilityExchangeModels

+ version :Unsigned Integer {readOnly}

+ capability :Cabability {readOnly}

Identifiable

VariationPointHierarchy

+variation 1..* +variation 1..*+variation 1..*

+variationPoint

1..*

+hierarchy 0..1

+variationPoint 0..*

+models 0..*

+variation 1

+variation 1..*

+depencency 0..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 15/87

A VariabilityExchangeModel in turn contains a number of VariationPoints. Thus, a

VariabilityExchangeModel describes the variable aspects of an artifact, but only those.

All non-variable facets of the artifact are discarded because they are not necessary for

our purpose.

3.1 VariationPoints and Variations

As shown in Figure 2, we distinguish between two different kinds of VariationPoints:

1. StructuralVariationPoints are variation points where the structure of a model

changes during the binding process. StructuralVariationPoints define which el-

ements are contained in a bound artifact. There are two kinds of structural var-

iation points:

a. OptionalStructuralVariationPoint – variation points that can be selected

or deselected.

b. XorStructuralVariationPoint – i.e. variation points that represent sets of

alternatives from which exactly one can be selected.

2. ParameterVariationPoints are variation points which select a numerical value

for a parameter during the binding process. They do not change the structure

of an artifact. There are two kinds of parameter variation points:

a. CalculatedParameterVariationPoint – variation points where the param-

eter value is calculated by an expression.

b. XorParameterVariationPoint – variation points where the parameter

value is selected from a list of values.

Each VariationPoint is associated with one or more Variations. The Variations enumer-

ate the possible variants for their respective VariationPoints. When an artifact is bound,

then one of these variations (OptionalStructuralVariationPoints also allow zero varia-

tions here) is selected to be included in the bound artifact, and all others are discarded.

Both Variations and VariationPoints may refer to artifact elements (correspondingVar-

iableArtifactElement), for example the Simulink block or the line of code which corre-

spond to the VariationPoint respectively Variation.

VariationPoints can further define dependencies on other variation points (VariationDe-

pendency), for example one variation point may require another variation points. This

is useful to express technical dependencies in artifacts.

Furthermore, a VariationPoint may contain other VariationPoints to establish a hierar-

chy (VariationPointHierarchy), similarly to subsystem blocks in Simulink or hierarchies

in software architectures.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 16/87

3.2 Variation Point Descriptions versus Variation Point Selec-

tions

A VariabilityExchangeModel as defined in Figure 2 can actually serve two different

purposes:

 A variation point description lists all variation points and all their variations; that is

it describes a complete product line.

 A variation point description also lists all variation points, but selects one (or zero

for optional variation points) Variation for each variation point. The attribute

selected of Variation is used for that purpose. Any such selection must be con-

sistent with the expression or condition attribute of a Variation, as well as with de-

pendencies between variation points.

Both variation point descriptions and variation point selections use the same structure;

the attribute type of VariabilityExchangeModel determines how a

VariabilityExchangeModel should be interpreted.

3.3 Binding

The Variability Exchange Language does not make any assumptions on how the bind-

ing process for the associated artifact works. We do however provide a way to attach

Conditions or Expressions to Variations:

 In a StructuralVariationPoint, a Variation comes with a Condition that determines

whether the associated artifact element is part of a bound artifact.

 In a ParameterVariationPoint, the Variation determines a value for the associated

artifact element. This is done either by computing it (CalculatedVariation) or select-

ing from one of several values (ValueVariation).

In a variation point description (see section 3.2) the result of the evaluation of a condi-

tion or expression in a Variation must be compatible with the attribute selected of a

Variation. That is, if the attribute selected of a Variation has the value true, then its

condition must also evaluate to true.

3.4 Common Concepts

Most classes in the Variability Exchange Language are based on the class Identifiable,

which provides them with a name and a unique identifier. Identifable also provide a

way to attach application-specific data (SpecialData) to elements in the Variability Ex-

change Language.

3.5 API

In addition to the contents of the exchange format basic operations of a Variability

Interface are defined in the class VariabilityAPI. These operations cover the following

operations:

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 17/87

 The import and export of VariabilityExchangeModels

 Getting and setting configurations, which are also VariabilityExchangeModels

 Getting information on the read or write access (Capability) to VariationPoints

and VariabilityExchangeModels as configurations.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 18/87

4 Variability Exchange Language Class Reference

In this chapter, we use the phrases must, must not, shall, shall not, should, should not

and may in conformance with RFC 2119 [6]:

 MUST – This word, or the terms "REQUIRED" or "SHALL", mean that the definition

is an absolute requirement of the specification.

 MUST NOT – This phrase, or the phrase "SHALL NOT", mean that the definition

is an absolute prohibition of the specification.

 SHOULD – This word, or the adjective "RECOMMENDED", mean that there may

exist valid reasons in particular circumstances to ignore a particular item, but the

full implications must be understood and carefully weighed before choosing a dif-

ferent course.

 SHOULD NOT – This phrase, or the phrase "NOT RECOMMENDED" mean that

there may exist valid reasons in particular circumstances when the particular be-

havior is acceptable or even useful, but the full implications should be understood

and the case carefully weighed before implementing any behavior described with

this label.

 MAY – This word, or the adjective "OPTIONAL", mean that an item is truly optional.

One vendor may choose to include the item because a particular marketplace re-

quires it or because the vendor feels that it enhances the product while another

vendor may omit the same item. An implementation which does not include a par-

ticular option MUST be prepared to interoperate with another implementation which

does include the option, though perhaps with reduced functionality. In the same

vein an implementation which does include a particular option MUST be prepared

to interoperate with another implementation which does not include the option (ex-

cept, of course, for the feature the option provides.)

Furthermore, we are using the following typographic conventions:

 An underlined word is the name of an UML class, ULM attribute or other UML ele-

ment.

 A word set in typewriter font is the name of an XML element or or XML code.

 A paragraph that is marked with a  symbol on the margin is a constraint.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 19/87

4.1 ArtifactElement < artifact-element-type>

Figure 3 UML Diagram for class ArtifactElement

<xs:complexType name="artifact-element-type">

 <xs:sequence>

 <xs:any processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="type" type="xs:string" use="optional"/>

 <xs:attribute name="uri" type="xs:anyURI" use="optional"/>

</xs:complexType>

Listing 1 XML Schema for artifact-element-type

<optional-structural-variationpoint id="vp1">

 <variation id="vp1v1">

 <corresponding-variable-artifact-element uri="file:///C:/SPES/file1.c"/>

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

</optional-structural-variationpoint>

Listing 2 XML Example for artifact-element-type using URIs

<optional-structural-variationpoint id="vp2">

 <variation id="vp2v1">

 <corresponding-variable-artifact-element type="simulink">

 <simulink-id>12</simulink-id>

 </corresponding-variable-artifact-element>

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

</optional-structural-variationpoint>

Listing 3 XML Example for artifact-element-type using artifact-specific XML elements

4.1.1 Description

An ArtifactElement is a reference to an element in an artifact.

4.1.2 Attribute uri

The optional attribute uri is a reference to the artifact. The content of the attribute uri is

a Uniform Resource Identifier.

 The attribute URI of an ArtifactElement should conform to the definition of Uniform

Resource Locators as specified in [3].

 Although the attribute URI of ArtifactElement is optional, it is recommended to supply

an URI instead of additional attributes (that is, arbitrary XML child elements as de-

scribed in section 4.1.4) whenever possible.

ArtifactElement

+ type :String [0..1] {readOnly}

+ uri :UniformResourceIdentifier [0..1] {readOnly}

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 20/87

4.1.3 Attribute type

The optional attribute type specifies the type of artifact that is addressed by this

ArtifactElement.

The attribute type is a string, not an enumeration so that new artifact types can be

added without changing the XML schema. Nevertheless, the following types are pre-

defined:

 simulink

 doors

 Although the attribute type of an ArtifactElement is defined as optional, it is recom-

mended to supply a type.

4.1.4 Adding arbitrary XML Elements

In the XML schema, the type artifact-element-type allows arbitrary XML child elements.

This is implemented by using the <xs:any> element (see Listing 1), which permits the

use of any XML element regardless of whether it is defined in the current schema. The

type of the artifact is documented in the type attribute.

For example, Listing 3 shows a Variation whose corresponding variable artifact ele-

ment is a Simulink block with the Identifier 12.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 21/87

4.2 BindingTime <bindingtime-type>

Figure 4 UML Diagram for class BindingTime

<xs:complexType name="bindingtime-type">

 <xs:sequence>

 <xs:element name="name"

 type="bindingtime-enum"/>

 <xs:element name="condition"

 type="expression-type"

 minOccurs="0"

 maxOccurs="1" />

 </xs:sequence>

 <xs:attribute name="selected" type="xs:boolean" use="optional"/>

</xs:complexType>

Listing 4 XML Schema for bindingtime-type

<variability-exchange-model type="variationpoint-description" id="model">

 <optional-structural-variationpoint id="vp1">

 <bindingtime>

 <name>preprocessor-time</name>

 </bindingtime>

 <variation id="vp1v1">

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

 </optional-structural-variationpoint>

 <optional-structural-variationpoint id="vp2">

 <bindingtime>

 <name>preprocessor-time</name>

 <condition type="single-feature-condition">

 SmallSoftwareFootprint

 </condition>

 </bindingtime>

 <bindingtime>

 <name>post-build</name>

 <condition type="single-feature-condition">

 LargeSoftwareFootprint

 </condition>

 </bindingtime>

 <variation id="vp2v1">

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

 </optional-structural-variationpoint>

</variability-exchange-model>

Listing 5 XML Example for binding-time-type in a variationpoint-configuration

BindingTime

+ selected :Boolean [0..1]

+ name :BindingTimeEnum

+ condition :Expression [0..1]

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 22/87

<variability-exchange-model type="variationpoint-configuration" id="model">

 <optional-structural-variationpoint id="vp1">

 <bindingtime>

 <name>preprocessor-time</name>

 </bindingtime>

 <variation id="vp1v1">

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

 </optional-structural-variationpoint>

 <optional-structural-variationpoint id="vp2">

 <bindingtime selected="false">

 <name>preprocessor-time</name>

 <condition type="single-feature-condition">

 SmallSoftwareFootprint

 </condition>

 </bindingtime>

 <bindingtime selected="true">

 <name>post-build</name>

 <condition type="single-feature-condition">

 LargeSoftwareFootprint

 </condition>

 </bindingtime>

 <variation id="vp2v1">

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

 </optional-structural-variationpoint>

</variability-exchange-model>

Listing 6 XML Example for binding-time-type in a variationpoint-configuration

4.2.1 Description

The binding time of a variation point describes how the associated variability is re-

solved1. Common ways to resolve a variation point are

 A variation point is removed from its artefact. For example, the #ifdef /

#endif idiom commonly found in a C preprocessor code removes part of the

source code.

 A variation point is set to “inactive”. For example, an if statement may prevent

certain code sections from being executed. This is typically used if the binding

comes too late in the process and the code cannot be removed.

 A parameter is assigned a fixed value.

What exactly happens when a variation point is bound is implementation specific, and

beyond the scope this document.

4.2.2 Attribute selected

A VariationPoint may have more than one BindingTime attributes. This is useful if the

decision for the binding time of the variation point is delayed. For example, it may not

be clear from the beginning whether a particular subsystem is removed during code

1 Contrary to what the term BindingTime suggests, this is not a point in time, but rather a phase in the

build process.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 23/87

generation (binding time CodeGenerationTime, section 4.3.5) or just deactivated dur-

ing startup (binding time PostBuild, section 4.3.10). This decision is made at some time

during the build process.

 The attribute selected of a BindingTime shall be present if the

VariabilityExchangeModel which contains the BindingTime is of type

VariationPointSelection.

 The attribute selected has no effect if the type of the VariabilityExchangeModel is of

type VariationPointDescription and thus shall be omitted.

If a VariationPoint has more than one bindingtime attribute, then the attribute selected

is used to designate exactly one of the binding times as the binding time that is actually

used for the binding:

 Let 𝑣 be a VariationPoint which and let 𝑠1, … , 𝑠𝑛 be the values of the selected attrib-

utes of the BindingTimes of 𝑣. Then the following conditions shall hold:

1. ∃𝑖 ∈ {1, … , 𝑛}: 𝑠𝑖 = 𝑡𝑟𝑢𝑒

2. ∀𝑗 ∈ {1, … , 𝑛}, 𝑖 ≠ 𝑗: 𝑠𝑖 = 𝑓𝑎𝑙𝑠𝑒

 If a BindingTime has both an attribute selected 𝑠 and an an attribute condition 𝑐, then

the following condition shall hold:

𝑒𝑣𝑎𝑙(𝑐) = 𝑠

4.2.3 Attribute name

The attribute name of a BindingTime is a textual representation of the binding time. It

is of type BindingTimeEnum.

4.2.4 Attribute condition

If a VariationPoint 𝑣 has multiple BindingTimes, then the attribute condition may be

used to select one BindingTime as the actual BindingTime for 𝑣.

 Let 𝑣 be a VariationPoint which and let 𝑐1, … , 𝑐𝑛 be the conditons of the BindingTimes

of 𝑣. Then the following conditions shall hold:

3. ∃𝑖 ∈ {1, … , 𝑛}: 𝑒𝑣𝑎𝑙(𝑐𝑗) = 𝑡𝑟𝑢𝑒

4. ∀𝑗 ∈ {1, … , 𝑛}, 𝑖 ≠ 𝑗: 𝑒𝑣𝑎𝑙(𝑐𝑗) = 𝑓𝑎𝑙𝑠𝑒

In other words, if a VariationPoint has more than one BindingTime with a condition,

then only one condition shall evaluate to true. Obviously, a condition is only useful of

a VariationPoint has more than one BindingTime.

See section 4.2.2 for more information on condition is used to select a binding time.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 24/87

4.3 BindingTimeEnum <bindingtime-enum>

Figure 5 UML Diagram for enumeration BindingTimeEnum

<xs:simpleType name="bindingtime-enum">

 <xs:restriction base="xs:string">

 <xs:enumeration value="requirements-time"/>

 <xs:enumeration value="blueprint-derivation-time"/>

 <xs:enumeration value="model-construction-time"/>

 <xs:enumeration value="model-simulation-time"/>

 <xs:enumeration value="code-generation-time"/>

 <xs:enumeration value="preprocessor-time"/>

 <xs:enumeration value="compile-time"/>

 <xs:enumeration value="link-time"/>

 <xs:enumeration value="flash-time"/>

 <xs:enumeration value="post-build"/>

 <xs:enumeration value="post-build-loadable-time"/>

 <xs:enumeration value="post-build-selectable-time"/>

 <xs:enumeration value="run-time"/>

 </xs:restriction>

</xs:simpleType>

Listing 7 XML Schema for bindingtime-enum

4.3.1 RequirementsTime

At RequirementsTime, variants are bound by selecting a subset of the overall require-

ments for a product line.

4.3.2 BluePrintDerivationTime

The binding time BlueprintDerivationTime stems from AUTOSAR. In AUTOSAR, Blue-

prints are predefined templates for partial models. When a blueprint is applied, the

variation points in the blueprint indicate locations in the template where a template

processor or even human developer needs to fill in more information.

«enumeration»

BindingTimeEnum

 RequirementsTime

 BluePrintDerivationTime

 ModelConstructionTime

 ModelSimulationTime

 CodeGenerationTime

 PreprocessorTime

 CompileTime

 LinkTime

 FlashTime

 PostBuild

 PostBuildLoadable

 PostBuildSelectable

 RunTime

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 25/87

4.3.3 ModelConstructionTime

At ModelConstructionTime, variants are bound by modifying the artifact. This may in-

volve deleting part of the model, but may also be achieved by adding new elements to

a model or changing parts of the existing model, or a combination of all three.

4.3.4 ModelSimulationTime

At ModelSimulationTime, variants are bound by excluding parts of the model during

simulation. This is typically done by constructing the model in such a way that some

parts are not used during the simulation.

4.3.5 CodeGenerationTime

At CodeGenerationTime, variants are bound by generating code that is tailored for one

or more variants.

4.3.6 PreprocessorTime

At PreProcessorTime, variants are bound by using a preprocessor that emits code only

for specific variants. To do that, the code must contain appropriate preprocessor direc-

tives, for example #ifdef statements.

4.3.7 CompileTime

At CompileTime, variation points are resolved by the compiler, for example by not gen-

erating code for certain variants (dead code elimination) or by using specific compiler

switches.

4.3.8 LinkTime

At Linktime, variants are bound by using only those files that are necessary for a par-

ticular variant are used to build a library or application.

4.3.9 FlashTime

At FlashTime, variants are bound by (pre)loading variant specific data sets into the

flash memory embedded device.

4.3.10 PostBuild

At PostBuild, variants are bound by activating only certain parts of an application.

4.3.11 PostBuildLoadable

At PostBuildLoadable, variants are bound by selecting a parameter set (typically stored

in flash memory) at the launch of an application. PostBuildLoadable is often used as a

synonym for PostBuild.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 26/87

4.3.12 PostBuildSelectable

At PostBuildSelectable, variants are bound by selecting one of several parameter sets

(typically stored in flash memory) at the launch of an application. PostBuildSelectable

is often used as a synonym for PostBuild.

4.3.13 RunTime

At RunTime, variants are bound by switching between different program states or ex-

ecuting different parts of an application. Runtime is usually not regarded as a binding

time, but is included for completeness here.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 27/87

4.4 CalculatedParameterVariationPoint

 <calculated-parameter-variationpoint-type>

Figure 6 UML Diagram for class CalculatedParameterVariationPoint

<xs:complexType name="calculated-parameter-variationpoint-type">

 <xs:complexContent>

 <xs:extension base="variationpoint-type">

 <xs:sequence>

 <xs:element name="variation" type="calculated-variation-type"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Listing 8 XML Schema for calculated-parameter-variationpoint-type

ParameterVariationPoint

CalculatedParameterVariationPoint XorParameterVariationPoint

ValueVariation

+ condition :Expression [0..1]

+ value :String

CalculatedVariation

+ expression :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

+variation 1 +variation 1..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 28/87

<calculated-parameter-variationpoint id="vp1">

 <variation id="vp1v1">

 <expression type="pvscl-expression">6*9</expression>

 </variation>

</calculated-parameter-variationpoint>

Listing 9 XML Example for calculated-parameter-variationpoint-type

4.4.1 Description

A CalculatedParameterVariatonPoint is a ParameterVariationPoint that defines a value

for a variation point in an artifact. Unlike a XorParameterVariationPoint, which picks

one value from a number of choices, a CalculatedParameterVariatonPoint uses an

expression to define the value.

A CalculatedParameterVariatonPoint contains a single CalculatedVariation whose at-

tribute expression defines the expression that is used to calculate the value for the

associated variation point.

4.4.2 Notes

 The class CalculatedParameterVariationPoint inherits from the class

ParameterVariationPoint, which inherits from VariationPoint.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 29/87

4.5 CalculatedVariation <calculated-variation-type>

Figure 7 UML Diagram for class CalculatedVariation

<xs:complexType name="calculated-variation-type">

 <xs:complexContent>

 <xs:extension base="variation-type">

 <xs:sequence>

 <xs:element name="expression"

 type="expression-type"

 minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Listing 10 XML Schema for calculated-variation-type

ParameterVariationPoint

CalculatedParameterVariationPoint XorParameterVariationPoint

ValueVariation

+ condition :Expression [0..1]

+ value :String

CalculatedVariation

+ expression :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

+variation 1 +variation 1..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 30/87

<calculated-parameter-variationpoint id="vp1">

 <variation id="vp1v1">

 <expression type="pvscl-expression">6*9</expression>

 </variation>

</calculated-parameter-variationpoint>

Listing 11 XML Example for calculated-variation-type

4.5.1 Description

Each CalculatedParameterVariationPoint aggregates a single CalculatedVariation. A

CalculatedVariation is a Variation that determines a value for a Calculated-

VariationPoint.

4.5.2 Attribute expression

The optional attribute expression of a CalculatedVariation specifies the expression that

is used to compute the value of a CalculatedVariation.

 The attribute expression of a CalculatedVariation may return an arbitrary value.

Which values are allowed depends on the artifact elements which are referenced by

the attribute correspondingVariableArtifactElement (see 4.21.3).

4.5.3 Binding

When a CalculatedParameterVariationPoint is bound, the expression of its

CalculatedVariation is evaluated. The result of the evaluation gets assigned to the ar-

tifact element(s) which are referenced by the attribute correspondingVariableArtifact-

Element (see section 4.21.3).

 A CalculatedParameterVariationPoint can only be bound when its

CalculatedVariation has an attribute expression.

4.5.4 Notes

 The class CalculatedVariation inherits from the class Variation.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 31/87

4.6 Capability <capability-type>

Figure 8 UML Diagram for class Capability

<xs:complexType name="capability-type">

 <xs:sequence>

 <xs:element name="import-variability-exchange-model" type="xs:boolean" />

 <xs:element name="export-variability-exchange-model" type="xs:boolean" />

 <xs:element name="get-configuration" type="xs:boolean" />

 <xs:element name="set-configuration" type="xs:boolean" />

 </xs:sequence>

</xs:complexType>

Listing 12 XML Schema for capability-type

<?xml version="1.0" encoding="UTF-8"?>

<variability-exchange-models id="root"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="../VariabilityExchangeLanguage.xsd">

 <version>1</version>

 <capability>

 <import-variability-exchange-model>true</import-variability-exchange-model>

 <export-variability-exchange-model>true</export-variability-exchange-model>

 <get-configuration>true</get-configuration>

 <set-configuration>true</set-configuration>

 </capability>

</variability-exchange-models>

Listing 13 XML Example for capability-type

4.6.1 Description

A Capability describes which operations are supported by a particular instance of

VariabilityAPI. The rationale for introducing Capability is that not all implementations of

the VariabilityAPI support all its operations.

4.6.2 Attribute importVariabilityExchangeModels

The attribute getVariationPoints determines whether the operation

importVariabilityExchangeModels of the class VariabilityAPI is supported:

 If getVariationPoints is 𝑡𝑟𝑢𝑒, then the VariabilityAPI supports the operation

importVariabilityExchangeModels.

 If getVariationPoints is 𝑓𝑎𝑙𝑠𝑒, then the VariabilityAPI does not support the oper-

ation importVariabilityExchangeModels.

Capability

+ importVariabilityExchangeModels :Boolean {readOnly}

+ exportVariabilityExchangeModels :Boolean {readOnly}

+ getConfiguration :Boolean {readOnly}

+ setConfiguration :Boolean {readOnly}

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 32/87

4.6.3 Attribute exportVariabilityExchangeModels

The attribute setVariationPoints determines whether the operation

exportVariabilityExchangeModels of the class VariabilityAPI is supported:

 If setVariationPoints is 𝑡𝑟𝑢𝑒, then the VariabilityAPI supports the operation

exportVariabilityExchangeModels.

 If setVariationPoints is 𝑓𝑎𝑙𝑠𝑒, then the VariabilityAPI does not support the oper-

ation exportVariabilityExchangeModels.

4.6.4 Attribute getConfiguration

The attribute getConfiguration determines whether the operation getConfiguration of

the class VariabilityAPI is supported:

 If getConfiguration is 𝑡𝑟𝑢𝑒, then the VariabilityAPI supports the operation

getConfiguration.

 If getConfiguration is 𝑓𝑎𝑙𝑠𝑒, then the VariabilityAPI does not support the opera-

tion getConfiguration.

4.6.5 Attribute setConfiguration

The attribute setConfiguration determines whether the operation setConfiguration of

the class VariabilityAPI is supported:

 If setConfiguration is 𝑡𝑟𝑢𝑒, then the VariabilityAPI supports the operation

setConfiguration.

 If setConfiguration is 𝑓𝑎𝑙𝑠𝑒, then the VariabilityAPI does not support the opera-

tion setConfiguration.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 33/87

4.7 Expression <expression-type>

Figure 9 UML Diagram for class Expression

<xs:complexType name="expression-type">

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="type" type="expression-enum" use="required"/>

 <xs:attribute name="datatype" type="xs:string" use="optional"/>

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

Listing 14 XML Schema for expression-type

<xor-structural-variationpoint id="vp1">

 <variation id="vp1v1">

 <condition type="single-feature-condition" datatype="bool">

 Feature1

 </condition>

 </variation>

 <variation id="vp1v2">

 <condition type="and-feature-condition" datatype="bool">

 Feature2,Feature3

 </condition>

 </variation>

 <variation id="vp1v3">

 <condition type="or-feature-condition" datatype="bool">

 Feature4, Feature5, Feature6

 </condition>

 </variation>

 <variation id="vp1v4">

 <condition type="pvscl-expression" datatype="ps:boolean">

 Feaure7 AND Feature8

 </condition>

 </variation>

</xor-structural-variationpoint>

Listing 15 XML Example for expression-type

4.7.1 Description

An Expression is similar to an expression in a programming language. In our case,

expressions fall into two categories:

 “Genuine” expressions which may return any kind of value. These are represented

by the type PVSCLExpression.

 Constraints, which may only return Boolean values. These are represented by the

SingleFeatureExpression, AndFeatureExpression and OrFeatureExpression. A

constraint may also be of type PVSCLExpression; in this case the return value must

be of type Boolean.

String

Expression

+ type :ExpressionTypeEnum

+ datatype :String [0..1]

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 34/87

Technically, an Expression is a string whose syntax is determined by the attribute type.

In the XML representation, the actual expression is contained in the inner text of the

expression of condition element2.

 An expression shall not be an empty string.

4.7.2 Attribute type

The attribute type defines the kind of expression that in the inner text of the expression

of condition element. There are several kinds of expressions:

 SingleFeatureExpression (single-feature-condition)

 AndFeatureExpression (and-feature-condition)

 OrFeatureExpression (or-feature-condition)

 PVSCLExpression (pvscl-expression)

 OCLExpression (ocl-expression)

 AUTOSARExpression (autosar-expression)

The individual expression types are explained in subsections 4.7.4, 4.7.5, 4.7.6, 4.7.7,

4.7.8 and 4.7.9.

4.7.3 Attribute datatype

The attribute datatype constrains the return type of the expression. Since the possible

values for datatype depend on the artifact(s) involved, they are not further standardized

here.

 If the attribute datatype of an Expression exists, then the return type of the

Expression should be compatible with the data type given by datatype.

4.7.4 SingleFeatureCondition

A SingleFeatureCondition is a type of expression that models a Boolean condition

whose literal is a single Feature. SingleFeatureCondition is a special case of

OrFeatureCondition or AndFeatureCondition that can be used in cases where a varia-

ble element in an artifact depends on a single feature instead of a combination of fea-

tures.

The example in Listing 15 translates to the Boolean expression

 𝐹𝑒𝑎𝑡𝑢𝑟𝑒1

 Formally, if a SingleFeatureCondition references the feature 𝑓1, then this translates

into the Boolean expression

2 For simplicity and consistency, XML elements of type expression-type are always named expression

or condition.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 35/87

eval(𝑓𝑖)

where eval(𝑓𝑖) is 𝑡𝑟𝑢𝑒 if feature 𝑓𝑖 is selected, and eval(𝑓𝑖) is 𝑓𝑖 is not selected.

 The datatype for an Expression of type SingleFeatureExpression should be Boolean.

See also section 4.7.10.1 on how single features are represented in XML.

4.7.5 AndFeatureCondition

An AndFeatureCondition is a special Condition that models a Boolean condition whose

literals are features, and which are connected by a Boolean AND. The example in

Listing 15 translates to the Boolean expression

 𝐹𝑒𝑎𝑡𝑢𝑟𝑒2 ∧ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒3 ∧ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒4

 If an AndFeatureCondition references the features 𝑓1, 𝑓2, … , 𝑓𝑛, then this translates

into the following Boolean expression

⋀ eval(𝑓𝑖)

1≤𝑖≤𝑛

where eval(𝑓𝑖) is 𝑡𝑟𝑢𝑒 if feature 𝑓𝑖 is selected, and 𝑓𝑎𝑙𝑠𝑒 otherwise.

 The datatype for an Expression of type AndFeatureCondition should be Boolean.

In the XML representation, an AndFeatureCondition is comma-separated list of fea-

tures. See also section 4.7.10.2 on how features are represented in XML.

4.7.6 OrFeatureCondition

An OrFeatureCondition is a special Condition that models a Boolean condition whose

literals are features, and which are connected by a Boolean OR. The example in Listing

15 translates to the Boolean expression

 𝐹𝑒𝑎𝑡𝑢𝑟𝑒5⋁ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒6

 Formally, if a OrFeatureCondition references the features 𝑓1, 𝑓2, … , 𝑓𝑛, then this trans-

lates into the following Boolean expression

⋁ eval(𝑓𝑖)

1≤𝑖≤𝑛

where eval(𝑓𝑖) is 𝑡𝑟𝑢𝑒 if feature 𝑓1 is selected, and 𝑓𝑎𝑙𝑠𝑒 otherwise.

 The datatype for an Expression of type OrFeatureCondition should be Boolean.

In the XML representation, an OrFeatureCondition is comma-separated list of features.

See also section 4.7.10.2 on how features are represented in XML.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 36/87

4.7.7 PVSCLExpression

In terms of syntax and scope, PVSCLExpression is comparable to what most program-

ming languages offer.

 An expression of type PVSCLExpression shall use the syntax defined by [5].

 An expression of type PVSCLExpression shall be evaluated according to the rules

defined in [5].

4.7.8 OCLExpression

An OCLExpression uses the expression syntax and semantics defined by OCL, [7].

4.7.9 AUTOSARExpression

An AUTOSARExpression uses the expression syntax and semantics defined by

AUTOSAR, [8].

4.7.10 Representation of expressions and features in XML

A Feature is a reference to an element in a model that describes the variability of an

artifact, typically a feature model. The exact nature of a feature model is beyond the

scope of this document.

 In the XML, a feature is just a name. How exactly a Feature is mapped to its corre-

sponding element in the feature model is implementation dependent and beyond the

scope of this document.

 The name of a Feature shall be unique. That is, if features 𝑓1 and 𝑓2 have the same

string representation, then they are assumed to refer to the same element of the

same feature model.

4.7.10.1 Syntax for single-feature–condition

 In the XML representation, a feature is a string that matches the following pattern:

\s*[a-zA-Z_]([a-zA-Z0-9_]*\s*

That is, a feature is a sequence of characters which starts with a letter or an underscore

followed by letters, digits and underscores.

An XML element of type expression-type whose attribute type has the value

single-feature–condition must match to the above pattern.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 37/87

4.7.10.2 Syntax or and-feature-condition and or-feature-condition

 In the XML representation, a comma-separated list of features is a string that

matches the following pattern3:

\s*[a-zA-Z_]([a-zA-Z0-9_]*(\s*,\s*[a-zA-Z_]([a-zA-Z0-9_]*)*\s*

An XML element of type expression-type whose attribute type has the value and-

feature–condition or or-feature-condition must match to the above pattern.

3 In this pattern, \s donates a white space, typically a space or tab character,or a newline.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 38/87

4.8 ExpressionTypeEnum <expression-enum>

Figure 10 UML Diagram for class ExpressionTypeEnum

<xs:simpleType name="expression-enum">

 <xs:restriction base="xs:string">

 <xs:enumeration value="single-feature-condition"/>

 <xs:enumeration value="and-feature-condition"/>

 <xs:enumeration value="or-feature-condition"/>

 <xs:enumeration value="pvscl-expression"/>

 <xs:enumeration value="ocl-expression"/>

 <xs:enumeration value="autosar-expression"/>

 </xs:restriction>

</xs:simpleType>

Listing 16 XML Schema for expression-enum

4.8.1 Description

The enumeration ExpressionTypeEnum defines the possible values for the attribute

type of the class Expression. The semantics of these expression types is explained in

Section 4.7.

«enumeration»

ExpressionTypeEnum

 SingleFeatureCondition

 AndFeatureCondition

 OrFeatureCondition

 PVSCLExpression

 OCLExpression

 AUTOSARExpression

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 39/87

4.9 Identifiable <identifiable-type>

Figure 11 UML Diagram for class Identifiable

<xs:complexType name="identifiable-type" abstract="true">

 <xs:sequence>

 <xs:element name="special-data"

 type="special-data-type"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name" use="optional">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:minLength value="1"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="id" type="xs:ID" use="required"/>

</xs:complexType>

Listing 17 XML Schema for identifable-type

<optional-structural-variationpoint id="vp1" name="optional variationpoint">

 <special-data name="CreatorInfo">

 <data>

 <key>Created</key>

 <value type="xs:date">1998-11-17</value>

 </data>

 </special-data>

 <variation id="vp1v1" name="optional variation">

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

</optional-structural-variationpoint>

Listing 18 XML Example for identifable-type (id attribute)

SpecialData

+ name :String

KeyValuePair

+ key :String

Identifiable

+ name :string [0..1] {readOnly}

+ id :Identifier {readOnly}

Value

+ type :String [0..1]

+ value :String

+data

0..*

+value

+specialData 0..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 40/87

4.9.1 Description

Identifiable is an abstract class that defines means to provide unique identifiers for

elements of the variability exchange language. Identifiable is used as the base class

of for many classes of the Variability Exchange Language.

In the XML Schema, identifiable-type does not define an XML element of its

own, but adds two new attributes id and name to any type that is an extension of

identifiable-type.

<xs:complexType name="variationpoint-type" abstract="true">

 <xs:complexContent>

 <xs:extension base="identifiable-type">

 <xs:sequence>

 <xs:element name="bindingtime"

 type="bindingtime-type"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xs:element name="corresponding-variable-artifact-element"

 type="artifact-element-type"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Figure 12 Use of identifiable-type in the XML Schema

4.9.2 Attribute id

The attribute id of an Identifiable provides a unique identifier for an element.

In XML, id is an attribute of type xs:ID, which means that id is guaranteed to be

unique within a Variability Exchange Language document. Other XML elements may

use an attribute of type xs:IDREF to refer to an XML clement that is Identifiable.

 The value of the attribute id of an Identifiable shall be unique within a single Variabil-

ity Exchange Language document. That is, the following condition holds:

Let 𝑖1 and 𝑖2 be the values of the id XML attributes of the XML elements 𝑒1 and

𝑒2, with 𝑖1 equals 𝑖2. Then 𝑒1 and 𝑒2 are the same elements.

This is consistent with the definition of the types xs:IDREF and xs:IDREFS in XML.

 The value of the attribute id of an Identifiable shall not change over the lifetime of the

element which the Identifiable represents.

The reason for introducing the latter constraint is as follows. Imagine the following sit-

uation: the operations importVariabilityExchangeModels and getConfiguration return

variability language exchange documents that contain information about the same var-

iation point (in this context, “same” usually means that they refer to the same artifact

elements).

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 41/87

Then, the attribute id should have an identical value in both the documents returned

from importVariabilityExchangeModels and getConfiguration; otherwise there would

be no way to match the variation points.

4.9.3 Attribute name

The attribute name of an Identifiable provides a human readable name for an element.

It is recommended (but not enforced by the XML Schema) that all the name attributes

of the Identifiable elements in a Variability Exchange Language document have unique

values.

 The value of the attribute name of an Identifiable is not guaranteed to be unique

within a single variability exchange language document. It is however strongly recom-

mended to use unique values for name attributes as well.

 The value of attribute name shall not be an empty string.

4.9.4 Attribute specialData

Each Identifiable may aggregate one or more SpecialData objects. This makes sure

that most elements in the Variability Exchange Language can be augmented with ap-

plication specific data.

4.9.5 Notes

 Identifiable is an abstract class. Most of the classes described in this document

inherit from Identifiable.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 42/87

4.10 KeyValuePair <key-value-pair-type>

Figure 13 UML Diagram for class KeyValuePair

<xs:complexType name="key-value-pair-type">

 <xs:sequence>

 <xs:element name="key">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:minLength value="1"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="value">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="type" type="xs:string" use="optional"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

Figure 14 XML Schema for key-value-pair-type

<optional-structural-variationpoint id="vp1" name="optional variationpoint">

 <special-data name="CreatorInfo">

 <data>

 <key>Created</key>

 <value type="xs:date">1998-11-17</value>

 </data>

 </special-data>

 <variation id="vp1v1" name="optional variation">

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

</optional-structural-variationpoint>

Figure 15 XML Example for key-value-pair-type

SpecialData

+ name :String

KeyValuePair

+ key :String

Identifiable

+ name :string [0..1] {readOnly}

+ id :Identifier {readOnly}

Value

+ type :String [0..1]

+ value :String

+data

0..*

+value

+specialData 0..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 43/87

4.10.1 Description of Class KeyValuePair

Application specific data for VariationPoint and Variation objects is implemented by the

class SpecialData, which aggregates a number of KeyValuePair elements. As the

name already suggests, a KeyValuePair consists of a key and a value.

KeyValuePair is restricted to data that can be represented as strings. How key and

value are interpreted is up to the application. It is strongly recommended to use the

attribute key as some kind of (unique) identifier, and store the data associated with

key in the attribute value.

4.10.2 Attribute key of Class KeyValuePair

The attribute key of class KeyValuePair provides a way to identify a KeyValuePair.

 A SpecialData object shall not contain two or more KeyValueData objects whose at-

tribute key have the same value.

4.10.3 Description of Class Value

An object of class Value is a container for the value of a KeyValuePair.

4.10.4 Attribute value of Class Value

The attribute value of an object of class Value contains the application specific data

that is associated with the key of the KeyValuePair object which aggregates this object.

4.10.5 Attribute type of Class Value

The attribute type of class Value can be used to indicate the data type of the value of

a Value object. The contents of type are not standardized, but using XML data types

such as xs:string or xs:date is recommended.

4.10.6 XML Representation

 As shown in Figure 15, a key-value pair is implemented by the XML elements key

and value, which are enclosed by a data element4. The elements key and value

are XML strings.

 The XML representation of a Value object is an XML element named value which

contains an arbitrary string. Its definition is based on the XML type xs:string and

defines an additional attribute type which indicates the data type of the content.

4 The XML element data is not strictly necessary, but makes it easier to extend the key-value pair im-

plementation in the future, if neccessary.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 44/87

4.11 OptionalStructuralVariationPoint

 <optional-structural-variaton-point-type>

Figure 16 UML Diagram for class OptionalStructuralVariatonPoint

<xs:complexType name="optional-structural-variationpoint-type">

 <xs:complexContent>

 <xs:extension base="variationpoint-type">

 <xs:sequence>

 <xs:element name="variation"

 type="optional-variation-type"

 minOccurs="1"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Listing 19 XML Schema for optional-structural-variaton-point-type

OptionalVariation

+ condition :Expression [0..1]

StructuralVariationPoint

OptionalStructuralVariationPoint XorStructuralVariationPoint

XorVariation

+ condition :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

+variation 1..* +variation 1..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 45/87

<optional-structural-variationpoint id="vp1">

 <variation id="vp1v1">

 <condition type="single-feature-condition">feature1</condition>

 </variation>

</optional-structural-variationpoint>

Listing 20 XML Example for optional-structural-variaton-point-type

<optional-structural-variationpoint id="vp2">

 <variation id="vp2v1">

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

 <variation id="vp2v2">

 <condition type="single-feature-condition">Feature2</condition>

 </variation>

 <variation id="vp2v3">

 <condition type="single-feature-condition">Feature3</condition>

 </variation>

</optional-structural-variationpoint>

Listing 21 XML Example for optional-structural-variaton-point-type with multiple variations

4.11.1 Description

An OptionalStructuralVariationPoint is a VariationPoint that contains one or more

OptionalVariation objects.

4.11.2 Notes

 The class OptionalStructuralVariationPoint inherits from the class

StructuralVariationPoint.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 46/87

4.12 OptionalVariation <optional-variation-type>

Figure 17 UML Diagram for class OptionalVariation

<xs:complexType name="optional-variation-type">

 <xs:complexContent>

 <xs:extension base="variation-type">

 <xs:sequence>

 <xs:element name="condition"

 type="expression-type"

 minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Listing 22 XML Schema for optional-variation-type

OptionalVariation

+ condition :Expression [0..1]

StructuralVariationPoint

OptionalStructuralVariationPoint XorStructuralVariationPoint

XorVariation

+ condition :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

+variation 1..* +variation 1..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 47/87

<optional-structural-variationpoint id="vp1">

 <variation id="v1">

 <condition type="or-feature-expression">Feature1,Feature2</condition>

 </variation>

</optional-structural-variationpoint>

Listing 23 XML Example for optional-variation-type

4.12.1 Description

Each OptionalStructuralVariationPoint aggregates one or more OptionalVariation ob-

jects. An OptionalVariation is a Variation that determines whether an

OptionalStructuralVariationPoint gets deleted or set inactive during the binding pro-

cess.

4.12.2 Attribute condition

The optional attribute condition of an OptionalVariation defines the expression that is

used to compute the condition of an OptionalVariation.

 The attribute condition of an OptionalVariation shall return a Boolean value. That is,

its datatype attribute (if present) should be a Boolean or a data type which can be

converted into a Boolean.

 If an OptionalVariation has an attribute condition 𝑐 and an attribute selected 𝑠 (inher-

ited from Variation), then the following condition shall hold:

𝑒𝑣𝑎𝑙(𝑐) = 𝑠

4.12.3 Binding

When an OptionalStructuralVariationPoint is bound, the condition of each of its

OptionalVariations is evaluated. If the result of the evaluation is 𝑓𝑎𝑙𝑠𝑒, then the artifact

elements which are referenced by the attribute correspondingVariableArtifactElement

(see section 4.21.3) of the OptionalVariation get deleted or set inactive.

 An OptionalStructuralVariationPoint can only be bound when all its

OptionalVariations have a condition.

4.12.4 Notes

 The class OptionalVariation inherits from the class Variation.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 48/87

4.13 ParameterVariationPoint

 <parameter-variationpoint-group>

Figure 18 UML Diagram for class ParamaterVariationPoint

<xs:group name="parameter-variationpoint-group">

 <xs:choice>

 <xs:element name="calculated-parameter-variationpoint"

 type="calculated-parameter-variationpoint-type"/>

 <xs:element name="xor-parameter-variationpoint"

 type="xor-parameter-variationpoint-type"/>

 </xs:choice>

</xs:group>

Listing 24 XML Schema for parameter-variationpoint-group

ParameterVariationPoint

CalculatedParameterVariationPoint XorParameterVariationPoint

ValueVariation

+ condition :Expression [0..1]

+ value :String

CalculatedVariation

+ expression :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

+variation 1 +variation 1..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 49/87

4.13.1 Description

A ParameterVariationPoint defines a value for a variable element in an artifact, for

example

 A value or a C-preprocessor symbol (#define)

 A initialization value for a variable or a constant in a programing language

 A value for a variable in a Matlab workspace

The artifact elements are referenced by the attribute

correspondingVariableArtifactElement of the ParameterVariationPoint and the attrib-

ute correspondingVariableArtifactElement of its Variation(s) (see the classes

VariationPoint and Variation in Figure 18)

4.13.2 Notes

 The class ParameterVariationPoint is an abstract class which inherits from the

class VariationPoint.

 There are two subclasses of ParameterVariationPoint: CalculatedParameter-

VariationPoint und XorParameterVariationPoint.

 Like StructuralVariationPoint, ParameterVariationPoint is implemented in the XL

schema as group, not a type. We chose to use a group here because a type would

have established an extra XML element for ParameterVariationPoint, which would

only have complicated the document structure.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 50/87

4.14 SpecialData <special-data-type>

Figure 19 UML Diagram for class SpecialData

<xs:complexType name="special-data-type">

 <xs:sequence>

 <xs:element name="data"

 type="key-value-pair-type"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="optional"/>

</xs:complexType>

Figure 20 XML Schema for special-data-type

<optional-structural-variationpoint id="vp1" name="optional variationpoint">

 <special-data name="CreatorInfo">

 <data>

 <key>Created</key>

 <value type="xs:date">1998-11-17</value>

 </data>

 </special-data>

 <variation id="vp1v1" name="optional variation">

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

</optional-structural-variationpoint>

Figure 21 XML Example for special-data-type

4.14.1 Description

The class SpecialData allows adding application specific information to VariationPoint

and Variation objects. SpecialData aggregates a number of KeyValuePair elements

which contain the actual information.

SpecialData

+ name :String [0..1]

KeyValuePair

+ key :String

Identifiable

+ name :string [0..1] {readOnly}

+ id :Identifier {readOnly}

Value

+ type :String [0..1]

+ value :String

+data

0..*

+value

+specialData 0..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 51/87

4.14.2 Attribute name

The attribute name of a SpecialData indicates which kind of data is contained in the

SpecialData structure. The values of name are not standardized; it is highly recom-

mended to use a descriptive name that has a high probability of being unique.

 The attribute name of a SpecialData is optional.

 Any application that deals with variability information read from an artifact via meth-

ods exportVariabilityExchangeModels or getConfiguration (see Section 4.17) shall

not read or write the information contained in SpecialData if its name is unknown to

the application.

 If an application reads variability information from an artifact via methods

exportVariabilityExchangeModels or getConfiguration (see Section 4.17), then

changes this information, and later uses the methods

importVariabilityExchangeModels or setConfiguration (see Section 4.17) to write the

information to an artifact, then any SpecialData whose type is not known to the appli-

cation may be in an undefined state. This is because the information contained in

SpecialData may depend on the overall structure.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 52/87

4.15 StructuralVariationPoint

 <structural-variationpoint-group>

Figure 22 UML Diagram for class StructuralVariationPoint

<xs:group name="structural-variationpoint-group">

 <xs:choice>

 <xs:element name="optional-structural-variationpoint"

 type="optional-structural-variationpoint-type"/>

 <xs:element name="xor-structural-variationpoint"

 type="xor-structural-variationpoint-type"/>

 </xs:choice>

</xs:group>

Listing 25 XML Schema for structural-variationpoint-group

OptionalVariation

+ condition :Expression [0..1]

StructuralVariationPoint

OptionalStructuralVariationPoint XorStructuralVariationPoint

XorVariation

+ condition :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

+variation 1..* +variation 1..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 53/87

4.15.1 Description

A StructuralVariationPoint determines whether one or more elements in an artifact gets

deleted or set inactive during the binding process.

The artifact elements are referenced by the attribute

correspondingVariableArtifactElement of the StructuralVariationPoint and the attribute

correspondingVariableArtifactElement of its Variations (see the classes VariationPoint

and Variation in Figure 22)

4.15.2 Notes

 The class StructuralVariationPoint is an abstract class which inherits from the class

VariationPoint.

 The class StructuralVariationPoint has two subclasses: OptionalStructural-

VariationPoint and XorStructuralVariationPoint.

 Like ParameterVariationPoint, StructuralVariationPoint is implemented in the XML

Schema as a group, not as a type. We choose to use a group here because a type

would have established an extra XML element for StructuralVariationPoint, which

would only have complicated the document structure.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 54/87

4.16 ValueVariation <value-variation-type>

Figure 23 UML Diagram for class ValueVariation

<xs:complexType name="value-variation-type">

 <xs:complexContent>

 <xs:extension base="variation-type">

 <xs:sequence>

 <xs:element name="condition"

 type="expression-type"

 minOccurs="0"

 maxOccurs="1"/>

 <xs:element name="value" type="xs:string"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Listing 26 XML Schema for value-variation-type

ParameterVariationPoint

CalculatedParameterVariationPoint XorParameterVariationPoint

ValueVariation

+ condition :Expression [0..1]

+ value :String

CalculatedVariation

+ expression :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

+variation 1 +variation 1..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 55/87

<xor-parameter-variationpoint id="vp1">

 <variation id="vp1v1">

 <condition type="single-feature-condition">Feature1</condition>

 <value>1</value>

 </variation>

 <variation id="vp1v2">

 <condition type="single-feature-condition">Feature2</condition>

 <value>2</value>

 </variation>

 <variation id="vp1v3">

 <condition type="single-feature-condition">Feature3</condition>

 <value>3</value>

 </variation>

</xor-parameter-variationpoint>

Listing 27 XML Example for value-variation-type

4.16.1 Description

A ValueVariation selects a value for the corresponding artifact element of a

XorParameterVariationPoint. The artifact element in question is referenced by its at-

tribute correspondingVariableArtifactElement (see section 4.21.3).

Each XorParameterVariationPoint contains one or more ValueVariation objects. When

a XorParameterVariationPoint gets bound, the attribute condition of each

ValueVariation is evaluated. The condition may evaluate to 𝑡𝑟𝑢𝑒 for only one

ValueVariation, and the attribute value of this ValueVariation is then used to provide a

value for its correspondingVariableArtifactElement.

 Let 𝑣 be a XorParameterVariationPoint which and let 𝑠1, … , 𝑠𝑛 be the values of the at-

tribute selected of the ValueVariations of 𝑣. Then the following conditions shall hold:

1. ∃𝑖 ∈ {1, … , 𝑛}: 𝑠𝑖 = 𝑡𝑟𝑢𝑒

2. ∀𝑗 ∈ {1, … , 𝑛}, 𝑖 ≠ 𝑗: 𝑠𝑖 = 𝑓𝑎𝑙𝑠𝑒

4.16.2 Attribute condition

 When evaluated, the attribute condition of a ValueVariation shall return a Boolean

value. That is, its datatype attribute (if present) should be a Boolean or a data type

which can be converted into a Boolean.

 Let 𝑐1, 𝑐2, … , 𝑐𝑛 be the conditions of all the ValueVariations that are contained in a

given XorParameterVariationPoint. Then the following conditions shall hold

1. ∃𝑗 ∈ {1, … , 𝑛}: 𝑒𝑣𝑎𝑙(𝑐𝑗) = 𝑡𝑟𝑢𝑒

2. ∀𝑖 ∈ {1, … , 𝑛}, 𝑖 ≠ 𝑗: 𝑒𝑣𝑎𝑙(𝑐𝑖) = 𝑓𝑎𝑙𝑠𝑒

 If a ValueVariation has an attribute condition 𝑐 and an attribute selected 𝑠 (inherited

from Variation), then the following condition shall hold:

𝑒𝑣𝑎𝑙(𝑐) = 𝑠

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 56/87

4.16.3 Attribute value

 The attribute value of a ValueVariation is a constant, not an expression.

 The data type (e.g. Boolean, Integer, Floating Point, or an enumeration) and range

(e.g. 1…10) that is allowed for the attribute value of a ValueVariaton is defined by the

artifact element that is associated with ValueVariation (see

correspondingVariableArtifactElement, section 4.21.3).

4.16.4 Binding

Each XorParameterVariationPoint contains one or more ValueVariation objects. When

a XorParameterVariationPoint gets bound, the attribute condition of each

ValueVariation is evaluated. The condition may evaluate to 𝑡𝑟𝑢𝑒 for only one

ValueVariation, and the attribute value of this ValueVariation is then used to provide a

value for its correspondingVariableArtifactElement.

 A XorParameterVariationPoint can only be bound when all its ValueVariations have a

condition.

4.16.5 Notes

 The class ValueVariation inherits from the abstract class Variation.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 57/87

4.17 VariabilityAPI

Figure 24 UML Diagram for class VariabilityAPI

4.17.1 Description

The class VariabilityAPI defines the methods that are available for exchanging varia-

bility information through the Variability Exchange Language.

4.17.2 Attribute version

The attribute version documents the version of the variability language which is sup-

ported by this implementation of the Variability Exchange Language. It is obviously a

read-only attribute.

 The attribute version shall be a positive integer.

 See the attribute version of the class VariabilityExchangeModels (section 4.19.2) for

further constraints on this attribute.

4.17.3 Attribute capability

Not all implementations of the VariabilityAPI support all the methods that are shown in

Figure 24. The attribute capability documents which of these methods – most im-

portantly, importVariabilityExchangeModels, exportVariabilityExchangeModels,

getConfiguration, and setConfiguration – are supported by this implementation of the

VariabilityAPI.

4.17.4 Method importVariabilityExchangeModels

The method importVariabilityExchangeModels synchronizes all changes in the arti-

facts with the VariabilityExchangeModels structure. This means that new variation

points may be introduced, and existing variation points in the artifact may me changed

or deleted.

 Let 𝑚1, 𝑚2, … , 𝑚𝑘 be the VariabilityExchangeModel objects which are contained by

the parameter of type VariabilityExchangeModels object which is the input to the

VariabilityAPI

- version :int {readOnly}

- capability :Capability {readOnly}

+ importVariabil ityExchangeModels(Variabil ityExchangeModels) :void

+ exportVariabil ityExchangeModels() :Variabil ityExchangeModels

+ setConfiguration(Variabil ityExchangeModels) :void

+ getConfiguration(Identifiable) :Variabil ityExchangeModels

+ getVersion() :int

+ getCapability() :Capability

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 58/87

method importVariabilityExchangeModels. Then for all 𝑚𝑖, the attribute type shall

have the value VariationPointDescription.

 The method importVariabilityExchangeModels is only available if the attribute

capability.setVariationPoints has the value 𝑡𝑟𝑢𝑒.

4.17.5 Method exportVariabilityExchangeModels

The method exportVariabilityExchangeModels reads information on the variation

points in all available artifacts and returns a VariabilityExchangeModels structure.

 Let 𝑚1, 𝑚2, … , 𝑚𝑘 be the VariabilityExchangeModel objects which are contained by

the VariabilityExchangeModels object which is returned from the method

exportVariabilityExchangeModels. Then for all 𝑚𝑖, the attribute type shall have the

value VariationPointDescription .

 The method exportVariabilityExchangeModels is only available if the attribute

capability.getVariationPoints is set to 𝑡𝑟𝑢𝑒.

4.17.6 Method getConfiguration

The method getConfiguration reads one or more variant configurations from an artifact.

 Let 𝑚1, 𝑚2, … , 𝑚𝑘 be the VariabilityExchangeModel objects which are contained by

the VariabilityExchangeModels object which is returned from the method

getConfiguration. Then for all 𝑚𝑖, the attribute type shall have the value

VariationPointConfiguration.

 The method getConfiguration is only available if the attribute

capability.getConfiguration has the value 𝑡𝑟𝑢𝑒.

4.17.7 Method setConfiguration

The method setConfiguration writes one or more variant configurations to an artifact.

 Let 𝑚1, 𝑚2, … , 𝑚𝑘 be the VariabilityExchangeModel objects which are contained by

the parameter of type VariabilityExchangeModels object which is the input to the

method setConfiguration. Then for all 𝑚𝑖, the attribute type shall have the value

VariationPointConfiguration.

 The method setConfiguration is only available if the attribute

capability.setConfiguration has the value 𝑡𝑟𝑢𝑒.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 59/87

4.18 VariabilityExchangeModel

 <variability-exchange-model-type>

Figure 25 UML Diagram for class VariabilityExchangeModel

<xs:complexType name="variability-exchange-model-type">

 <xs:complexContent>

 <xs:extension base="identifiable-type">

 <xs:sequence>

 <xs:group ref="variationpoint-group"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="type" type="variability-api-enum" use="required"/>

 <xs:attribute name="uri" type="xs:anyURI" use="optional"/>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Listing 28 XML schema for variability-exchange-model-type

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariabilityExchangeModel

+ type :VariabilityAPITypeEnum {readOnly}

+ uri :UniformResourceIdentifier [0..1] {readOnly}

Identifiable

VariabilityExchangeModels

+ version :Unsigned Integer {readOnly}

+ capability :Cabability {readOnly}

+variationPoint 0..*

+models 0..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 60/87

<?xml version="1.0" encoding="UTF-8"?>

<variability-exchange-models id="root"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="../VariabilityExchangeLanguage.xsd">

 <version>1</version>

 <capability>

 <import-variability-exchange-model>true</import-variability-exchange-model>

 <export-variability-exchange-model>true</export-variability-exchange-model>

 <get-configuration>true</get-configuration>

 <set-configuration>true</set-configuration>

 </capability>

 <variability-exchange-model type="variationpoint-description" id="model1"

 uri="file:///C:/SPES/file1.c">

 …

 </variability-exchange-model>

 <variability-exchange-model type="variationpoint-description" id="model2"

 uri="file:///C:/SPES/file2.c">

 …

 </variability-exchange-model>

 <variability-exchange-model type="variationpoint-description" id="model3"

 uri="file:///C:/SPES/file3.c">

 …

 </variability-exchange-model>

 <variability-exchange-model type="variationpoint-description" id="model4"

 uri="file:///C:/SPES/file4.c">

 …

 </variability-exchange-model>

</variability-exchange-models>

Listing 29 XML example for variability-exchange-model-type

4.18.1 Description

A VariabilityExchangeModel is an artifact which may contain variation points. Exam-

ples for artifacts are

 C/C++ files

 Matlab/Simulink Models

 DOORS databases

4.18.2 Attribute type

The attribute type of a VariabilitExchangeModel determines whether this model is a

description of the variation points in the artifacts or defines a variant configuration:

 If the value of type is VariationPointDescription, then the attribute selected of

all Variations (see section 4.21.2) and BindingTimes (see section 4.2.2) has

no effect and shall be omitted.

 If the value of type is VariationPointConfiguration, then the attribute selected of

all Variations (see section 4.21.2) and BindingTimes (see section 4.2.2) is not

optional, and the attribute expression of CalculatedVariation must contain a

constant.

See also section 4.21.2.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 61/87

4.18.3 Attribute uri

The attribute uri of a VariabilityExchangeModel defines the Uniform Resource Locator

(URI, see [3]) of the artifact that is associated with the VariabilityExchangeModel.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 62/87

4.19 VariabilityExchangeModels

 <variability-exchange-models-type>

Figure 26 UML Diagram for class VariabilityExchangeModels

<xs:complexType name="variability-exchange-models-type">

 <xs:sequence>

 <xs:element name="version" type="xs:unsignedInt" fixed="1" />

 <xs:element name="capability" type="capability-type" />

 <xs:element name="variability-exchange-model"

 type="variability-exchange-model-type"

 minOccurs="0"

 maxOccurs="unbounded" />

 </xs:sequence>

</xs:complexType>

Listing 30 XML Schema for variability-exchange-models-type

<?xml version="1.0" encoding="UTF-8"?>

<variability-exchange-models id="root"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="../VariabilityExchangeLanguage.xsd">

 <version>1</version>

 <capability>

 <import-variability-exchange-model>true</import-variability-exchange-model>

 <export-variability-exchange-model>true</export-variability-exchange-model>

 <get-configuration>true</get-configuration>

 <set-configuration>true</set-configuration>

 </capability>

 <variability-exchange-model type="variationpoint-description" id="model1">

 …

 </variability-exchange-model>

 <variability-exchange-model type="variationpoint-configuration" id="model2">

 …

 </variability-exchange-model>

</variability-exchange-models>

Listing 31 XML example for variability-exchange-models-type

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariabilityExchangeModel

+ type :VariabilityAPITypeEnum {readOnly}

+ uri :UniformResourceIdentifier [0..1] {readOnly}

Identifiable

VariabilityExchangeModels

+ version :Unsigned Integer {readOnly}

+ capability :Cabability {readOnly}

+variationPoint 0..*

+models 0..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 63/87

4.19.1 Description

VariabilityExchangeModels is the top level object of a Variability Exchange Language

document. In the XML representation, variability-exchange-models is the root

element of the XML document object.

4.19.2 Attribute version

The attribute version of VariabilityExchangeModels defines the version of the Variabil-

ity Exchange Language to which the Variability Exchange Language document con-

forms.

 The attribute version of VariabilityExchangeModels should be a positive non-zero In-

teger.

 If a specific implementation of the Variability Exchange Language supports version 𝑖

and a Variability Exchange Language document is in version 𝑗, then the following

conditions should hold:

1. The implementation shall reject the document if 𝑖 < 𝑗.

2. The implementation shall accept the document if 𝑖 = 𝑗.

3. The implementation may accept the document if 𝑖 > 𝑗.

In other words, an implementation of the Variability Exchange Language should never

accept a document where the attribute version of the element

VariabilityExchangeModels is a greater than the one that is supported by the imple-

mentation. It may, however accept a document with a smaller version number (back-

wards compatibility). Obviously, if both version numbers are equal, the document

should be accepted5.

 The attribute version of VariabilityExchangeModels is read-only.

4.19.3 Attribute cabability

The attribute capability of VariabilityExchangeModels defines which API operations

(see section 4.16.5) are supported by the implementation of the Variability Exchange

Language that created the Variability Exchange Language document.

For more information see the class Capability.

5 Of course, the document might still be rejected later for another reason, for example a data type mis-

match.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 64/87

4.20 VariabilityAPITypeEnum <variability-api-enum>

Figure 27 UML Diagram for class VariabilityAPITypeEnum

<xs:simpleType name="variability-api-enum">

 <xs:restriction base="xs:string">

 <xs:enumeration value="variationpoint-description"/>

 <xs:enumeration value="variationpoint-configuration"/>

 </xs:restriction>

</xs:simpleType>

Listing 32 XML Schema for variability-api-type-enum

<?xml version="1.0" encoding="UTF-8"?>

<variability-exchange-models id="root"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="../VariabilityExchangeLanguage.xsd">

 <version>1</version>

 <capability>

 <import-variability-exchange-model>true</import-variability-exchange-model>

 <export-variability-exchange-model>true</export-variability-exchange-model>

 <get-configuration>true</get-configuration>

 <set-configuration>true</set-configuration>

 </capability>

 <variability-exchange-model type="variationpoint-description" id="model1">

 …

 </variability-exchange-model>

 <variability-exchange-model type="variationpoint-configuration" id="model2">

 …

 </variability-exchange-model>

</variability-exchange-models>

Listing 33 XML example for variability-api-type-enum

4.20.1 Description

The enumeration VariabilityAPITypeEnum differentiates between the two flavors of

VariabilityExchangeModel objects:

1. VariationPointDescription

2. VariationPointConfiguration

See the class VariabilityExchangeModel and section Fehler! Verweisquelle konnte

nicht gefunden werden. for more details.

«enumeration»

VariabilityAPITypeEnum

 VariationPointDescription

 VariationPointConfiguration

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 65/87

4.21 Variation <variation-type>

Figure 28 UML Diagram for class Variation

OptionalVariation

+ condition :Expression [0..1]

StructuralVariationPoint

OptionalStructuralVariationPoint XorStructuralVariationPoint

XorVariation

+ condition :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

+variation 1..* +variation 1..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 66/87

<xs:complexType name="variation-type" abstract="true">

 <xs:complexContent>

 <xs:extension base="identifiable-type">

 <xs:sequence>

 <xs:element name="hierarchy"

 type="variationpoint-hierarchy-type"

 minOccurs="0" maxOccurs="1"/>

 <xs:element name="depencency"

 type="variation-dependency-type"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="corresponding-variable-artifact-element"

 type="artifact-element-type"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="selected" type="xs:boolean" use="optional"/>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Figure 29 XML Schema for variation-type

4.21.1 Description

The abstract class Variation implements a variation of a variation point. Each instance

of the class VariationPoint contains one or more instances of the class Variation.

There are four classes that derive from Variation, namely OptionalVariaton,

XorVariation, CalculatedVariation and ValueVariation.

4.21.2 Attribute selected

If the attribute type of a VariabilityExchangeModel has the value

VariationPointConfiguration, then the attribute selected of a Variation 𝑣 decides wether

𝑣 is contained in the variation point configuration which is defined by the

VariabilityExchangeModel which contains 𝑣.

 If the attribute type of a VariabilityExchangeModel 𝑀 has the value

VariationPointDescription, then no Variation 𝑣 in 𝑀 shall have an attribute selected.

 If the attribute type of a VariabilityExchangeModel 𝑀 has the value

VariationPointConfiguration, then every Variation 𝑣 in 𝑀 shall have an attribute

selected.

 If the attribute type of a VariabilityExchangeModel 𝑀 has the value

VariationPointConfiguration, and the attribute selected of a Variation 𝑣 contained by

𝑀 has the value 𝑡𝑟𝑢𝑒, then 𝑣 is a member of the variation point configuration defined

by 𝑀.

 If the attribute type of a VariabilityExchangeModel 𝑀 has the value

VariationPointConfiguration, and the attribute selected of a Variation 𝑣 contained by

𝑀 has the value 𝑓𝑎𝑙𝑠𝑒, then 𝑣 is not a member of the variation point configuration de-

fined by 𝑀.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 67/87

4.21.3 Attribute correspondingVariableArtifactElement

The attribute correspondingVariableArtifactElement of a Variation 𝑣 implements a ref-

erence to the artifact elements which correspond to 𝑣.

 The attribute correspondingVariableArtifactElement is optional.

 If a Variation 𝑣 has more than one correspondingVariableArtifactElements 𝑐1, … , 𝑐𝑛

then the URIs of 𝑐1, … , 𝑐𝑛 do not need to point to the same artifacts. That is, the URI

attributes of 𝑐1, … , 𝑐𝑛 may have different values for each 𝑐𝑖.

4.21.4 Notes

 The class Variation inherits from the class Identifiable.

 The classes OptionalVariation, XorVariation, CalculatedVariation and

ValueVariation inherit from Variation.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 68/87

4.22 VariationPoint <variationpoint-type>

Figure 30 UML Diagram for class VariationPoint

<xs:complexType name="variationpoint-type" abstract="true">

 <xs:complexContent>

 <xs:extension base="identifiable-type">

 <xs:sequence>

 <xs:element name="bindingtime"

 type="bindingtime-type"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="corresponding-variable-artifact-element"

 type="artifact-element-type"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

<xs:group name="variationpoint-group">

 <xs:choice>

 <xs:group ref="structural-variationpoint-group"/>

 <xs:group ref="parameter-variationpoint-group"/>

 </xs:choice>

</xs:group>

Listing 34 XML Schema for variationpoint-type

4.22.1 Description

The abstract class VariationPoint describes a variationpoint in an artifact.

4.22.2 Attribute bindingTime

The attribute bindingTime defines the binding time of a VariationPoint. For more infor-

mation on the concept of binding times, see section 4.2.

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariabilityExchangeModel

+ type :VariabilityAPITypeEnum {readOnly}

+ uri :UniformResourceIdentifier [0..1] {readOnly}

Identifiable

VariabilityExchangeModels

+ version :Unsigned Integer {readOnly}

+ capability :Cabability {readOnly}

+variationPoint 0..*

+models 0..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 69/87

 If a VariationPoint does not declare a BindingTime, then it is up to the binding pro-

cess to define which binding time to use. For example, a process that uses a single

binding time may not state an explicit binding time for its variation points.

 A VariationPoint may define more than one binding time. In this case, the attribute

selected of the BindingTime elements decides which binding time is used in the ac-

tual binding process.

 If the VariabilityExchangeModel 𝑀 which contains a VariationPoint 𝑣 has the type

VariationPointConfiguration, then let 𝑠1, 𝑠2, … , 𝑠𝑛 be the values of the attribute se-

lected of the BindingTime attributes of 𝑣. Then the following conditions must hold:

1. ∃𝑖 ∈ {1, … , 𝑛}: 𝑒𝑣𝑎𝑙(𝑠𝑖) = 𝑡𝑟𝑢𝑒

2. ∀𝑗 ∈ {1, … , 𝑛}, 𝑗 ≠ 𝑖: 𝑒𝑣𝑎𝑙(𝑠𝑗) = 𝑓𝑎𝑙𝑠𝑒

A consequence of the above condition is that if a VariationPoint in a

VariationPointConfiguration has only a single BindingTime attribute 𝑏, then the attrib-

ute selected of 𝑏 shall have the value 𝑡𝑟𝑢𝑒.

How and when a value for the attribute selected is determined is beyond the scope of

this document.

4.22.3 Attribute correspondingVariableArtifactElement

The attribute correspondingVariableArtifactElement of a VariationPoint 𝑣 implements

a reference to the artifact elements which correspond to 𝑣.

 Not all VariationPoints have a correspondingVariableArtifactElement.

 If a VariationPoint 𝑣 has more than one correspondingVariableArtifactElements

𝑐1, … , 𝑐𝑛 then the URIs of 𝑐1, … , 𝑐𝑛 do not need to point to the same artifacts. That is,

the URI attributes of 𝑐1, … , 𝑐𝑛 may have different values for each 𝑐𝑖.

4.22.4 Notes

 The class VariationPoint inherits from the class Identifiable.

 There classes StructuralVariationPoint and ParameterVariationPoint inherit from

the class VariationPoint.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 70/87

4.23 VariationPointHierarchy

 <variationpoint-hierarchy-type>

Figure 31 UML Diagram for class VariationPointHierarchy

<xs:complexType name="variationpoint-hierarchy-type">

 <xs:complexContent>

 <xs:extension base="identifiable-type">

 <xs:sequence>

 <xs:element name="variationpoint" minOccurs="1" maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="ref" type="xs:IDREF" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Listing 35 XML Schema for variationpoint-hierarchy-type

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

OptionalVariation

+ condition :Expression [0..1]

StructuralVariationPoint ParameterVariationPoint

OptionalStructuralVariationPoint XorStructuralVariationPoint

XorVariation

+ condition :Expression [0..1]

CalculatedParameterVariationPoint XorParameterVariationPoint

ValueVariation

+ condition :Expression [0..1]

+ value :String

CalculatedVariation

+ expression :Expression [0..1]

Identifiable

VariationDependency

+ type :VariationDependencyEnum

+ condition :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariationPointHierarchy

+variation 1..* +variation 1..*+variation 1..*

+variationPoint

1..*

+hierarchy 0..1

+variation 1

+variation 1..*

+depencency 0..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 71/87

<variability-exchange-model type="variationpoint-description" id="model">

 <optional-structural-variationpoint id="vp1">

 <variation id="vp1v1">

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

 </optional-structural-variationpoint>

 <optional-structural-variationpoint id="vp2">

 <variation id="vp2v1">

 <hierarchy id="vp2h1">

 <variationpoint ref="vp1"/>

 </hierarchy>

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

 </optional-structural-variationpoint>

</variability-exchange-model>

Listing 36 XML Example for variationpoint-hierarchy-type

4.23.1 Description

Each Variation may contain a VariationPointHierarchy object. VariationPointHierarchy

establishes a hierarchy among VariationPoints and Variations.

The hierarchy is a graph 𝐺 = (𝑉, 𝐸) defined as follows:

 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} where 𝑣𝑖 is a VariationPoint in a Variability Exchange Language

document6.

 Let 𝑣𝑖 be a VariationPoint which contains a Variation which contains a

VariationPointHierarchy whose attribute ref refers to a VariationPoint 𝑣𝑗. Then

(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸.

 No two VariationPointHierarchy elements may refer to the same VariationPoints.

Formally, the following condition shall hold: (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 ⇒ ∀𝑘 ≠ 𝑖: (𝑣𝑘, 𝑣𝑗) ∉ 𝐸.

 𝐸 must not contain circles, that is, there cannot be a sequence. Formally, the fol-

lowing condition shall hold: (𝑣𝑖1
, 𝑣𝑖2

), (𝑣𝑖2
, 𝑣𝑖3

), … , (𝑣𝑖𝑘−2
, 𝑣𝑖𝑘−1

), (𝑣𝑖𝑘−1
, 𝑣𝑖𝑘

) ∈

𝐸 with 𝑖1 = 𝑖𝑘.

These conditions make sure that 𝐺 is a tree or a set of trees.

4.23.2 Attribute variationPoint

The attribute variationPoint of a VariationPointHierarchy identifies the endpoint of a

variationpoint hierarchy relation.

4.23.3 Notes

 The class VariationPointHierarchy inherits from Identifiable.

6 Strictly speaking, 𝑉 would be a set of nodes and there is bijective mapping between 𝑉 and the set of

elements of type variationpoint-type in the DOM of the Variability Exchange Language docu-

ment. We use a simplified language for the sake of clarity here.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 72/87

 In the XML Schema, the attribute variationPoint of VariationPointHierarchy is not

implemented as a XML attribute but as a separate XML element named

variation with an XML attribute ref that implements the actual reference. This

is because variation has an upper multiplicity greater than one, but XML attributes

are restricted to an upper multiplicity of 1.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 73/87

4.24 VariationDependency <variation-dependency-type>

Figure 32 UML Diagram for class VariationDependenxy

<xs:complexType name="variation-dependency-type">

 <xs:complexContent>

 <xs:extension base="identifiable-type">

 <xs:sequence>

 <xs:element name="variation"

 minOccurs="1" maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="ref" type="xs:IDREF" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="condition"

 type="expression-type"

 minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="type"

 type="variation-dependency-enum"

 use="required"/>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Listing 37 XML Schema for variation-dependency-type

Identifiable

VariationDependency

+ type :VariationDependencyEnum

+ condition :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariationPointHierarchy

+hierarchy 0..1

+variation 1..*

+depencency 0..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 74/87

<variability-exchange-model type="variationpoint-description" id="model">

 <optional-structural-variationpoint id="vp1">

 <variation id="vp1v1">

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

 </optional-structural-variationpoint>

 <optional-structural-variationpoint id="vp2">

 <variation id="vp2v1">

 <depencency type="conflicts" id="vp2d1">

 <variation ref="vp1v1"/>

 </depencency>

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

 <variation id="vp2v2">

 <condition type="single-feature-condition">Feature2</condition>

 </variation>

 <variation id="vp2v3">

 <condition type="single-feature-condition">Feature3</condition>

 </variation>

 </optional-structural-variationpoint>

</variability-exchange-model>

Listing 38 XML example for variation-dependency-type

4.24.1 Description

A VariationDependency defines a dependency between Variation objects. Each

Variation may have an arbitrary number of dependencies on other Variations. There

are two types of variations: requires and conflicts.

If a Variation aggregates more than one VariationDependency, then all dependencies

must be fulfilled.

4.24.2 Attribute type

The attribute type of VariationDependency defines the type of a dependency. There

are two types of dependencies:

 requires

 conflicts

The enumeration VariationDependencyEnum defines the values that are allowed for

the attribute type.

4.24.3 Attribute variation

The attribute variation of a VariationDependency defines the target of a dependency.

4.24.4 Attribute condition

The optional attribute condition of a VariationDependency defines a condition under

which the relation that is defined by the VariationDependency is effective.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 75/87

4.24.5 Formal Definition

 Let 𝑣 be a Variation which contains a VariationDependency 𝑑, and let 𝑣1, 𝑣2, … , 𝑣𝑘 be

the Variation to which the attribute variation of 𝑑 refers, and let 𝑡 be the value of the

attribute type of 𝑑. Furthermore, let 𝑐 be the content of the attribute condition of 𝑣.

Then the condition of the VariationDependency 𝑑, condition(𝑑) is defined as follows:

 If the attribute type of 𝑑 is requires, then

condition(𝑑) = (𝑣 ⇒ (𝑐 ∧ (𝑣1 ∨ 𝑣2 ∨ … ∨ 𝑣𝑘))

 If the attribute type of 𝑑 is conflicts, then

condition(𝑑) = (𝑣 ⇒ (𝑐 ∧ (¬𝑣1 ∧ ¬𝑣2 ∧ … ∧ ¬𝑣𝑘))

 Let 𝑑1, 𝑑2, … , 𝑑𝑛 be the VariationDependency objects contained by a Variation 𝑣.

Then the condition of 𝑣, condition(𝑣) is defined as follows:

condition(𝑣) = condition(𝑑1) ∧ condition(𝑑2) ∧ … ∧ condition(𝑑𝑘)

 Let 𝑐1, 𝑐2, … , 𝑐𝑛 be the conditions of all Variation objects in a Variability Exchange

Language. Then the following condition shall hold:

𝑐1 ∧ 𝑐2 ∧ … ∧ 𝑐𝑛

4.24.6 Notes

 The class VariationDependency inherits from Identifiable.

 In the XML Schema, the attribute variation is not implemented as a XML attribute

but as a separate XML element named variation with an XML attribute ref that

implements the actual reference. This is because variation has an upper multiplicity

greater than one, but XML attributes are restricted to an upper multiplicity of 1 (that

is, an XML element may not have multiple elements with the same name).

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 76/87

4.25 VariationDependencyEnum

 <variation-dependency-enum>

Figure 33 UML Diagram for class VariationDependenyEnum

<xs:simpleType name="variation-dependency-enum">

 <xs:restriction base="xs:string">

 <xs:enumeration value="requires"/>

 <xs:enumeration value="conflicts"/>

 </xs:restriction>

</xs:simpleType>

Listing 39 XML Schema for variation-dependency-enum

4.25.1 Description

The enumeration VariationDependencyEnum defines which values are allowed for the

attribute type of VariationDependency. Currently, this enumeration defines two values:

 requires

 conflicts

For more information see VariationDependency.

«enumeration»

VariationDependencyEnum

 Requires

 Conflicts

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 77/87

4.26 XorParameterVariationPoint

 < xor-parameter-variationpoint-type>

Figure 34 UML Diagram for class XorParameterVariationPoint

<xs:complexType name="xor-parameter-variationpoint-type">

 <xs:complexContent>

 <xs:extension base="variationpoint-type">

 <xs:sequence>

 <xs:element name="variation"

 type="value-variation-type"

 maxOccurs="unbounded" />

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Listing 40 XML Schema for xor-parameter-variationpoint-type

ParameterVariationPoint

CalculatedParameterVariationPoint XorParameterVariationPoint

ValueVariation

+ condition :Expression [0..1]

+ value :String

CalculatedVariation

+ expression :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

+variation 1 +variation 1..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 78/87

<xor-parameter-variationpoint id="vp1">

 <variation id="vp1v1">

 <condition type="single-feature-condition">Feature1</condition>

 <value>1</value>

 </variation>

 <variation id="vp1v2">

 <condition type="single-feature-condition">Feature2</condition>

 <value>2</value>

 </variation>

 <variation id="vp1v3">

 <condition type="single-feature-condition">Feature3</condition>

 <value>3</value>

 </variation>

</xor-parameter-variationpoint>

Listing 41 XML Example for xor-parameter-variationpoint-type

4.26.1 Description

A XorParameterVariationPoint contains a number of ValueVariation objects. During

the binding process, the attribute condition of each ValueVariation objects is evaluated.

As described in section 4.16.2, it is guaranteed that if all ValueVariation objects have

a condition attribute, then there is exactly one ValueVariation whose condition evalu-

ates to 𝑡𝑟𝑢𝑒. The attribute value of this ValueVariation is then used to set the value of

the associated artifact element.

4.26.2 Notes

 The class XorParameterVariationPoint inherits from the class

ParameterVariationPoint.

 The class XorParameterVariationPoint is modelled after the switch state-

ment in the programming languages C or Java; it selects a single value from a list

of values. The difference is that a switch in C or Java first evaluates a Boolean

expression and then compares the result to a list of constants, while

XorParameterVariationPoint evaluates a list of Boolean expressions and selects

the one which returns 𝑡𝑟𝑢𝑒.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 79/87

4.27 XorStructuralVariationPoint

 <xor-structural-variationpoint-type>

Figure 35 UML Diagram for XorStructuralVariationPoint

<xs:complexType name="xor-structural-variationpoint-type">

 <xs:complexContent>

 <xs:extension base="variationpoint-type">

 <xs:sequence maxOccurs="unbounded">

 <xs:element name="variation" type="xor-variation-type"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Listing 42 XML Schema for xor-structural-variationpoint-type

OptionalVariation

+ condition :Expression [0..1]

StructuralVariationPoint

OptionalStructuralVariationPoint XorStructuralVariationPoint

XorVariation

+ condition :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

+variation 1..* +variation 1..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 80/87

<xor-structural-variationpoint id="vp1">

 <variation id="vp1v1" name="Alternative 1">

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

 <variation id="vp1v2" name="Alternative 2">

 <condition type="single-feature-condition">Feature2</condition>

 </variation>

 <variation id="vp1v3" name="Alternative 3">

 <condition type="single-feature-condition">Feature3</condition>

 </variation>

</xor-structural-variationpoint>

Listing 43 XML Example for xor-structural-variationpoint-type

4.27.1 Description

A XorStructuralVariationPoint contains one or more XorVariations. Its purpose is to

choose exactly one of several alternative Variations.

During the binding process, the attribute condition is evaluated for each XorVariation.

As described in section 4.28.2, it is guaranteed that if all XorVariation objects have a

condition attribute, then exactly one of those conditions evaluates to 𝑡𝑟𝑢𝑒. The artifact

element that corresponds to the XorVariation whose attribute condition evaluates to

true is then removed or set inactive.

4.27.2 Notes

 The class XorStructuralVariationPoint inherits from the class

StructuralVariationPoint.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 81/87

4.28 XorVariation <xor-variation-type>

Figure 36 UML Diagram for XorVariation

<xs:complexType name="xor-variation-type">

 <xs:complexContent>

 <xs:extension base="variation-type">

 <xs:sequence>

 <xs:element name="condition"

 type="expression-type"

 minOccurs="0"

 maxOccurs="1"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Listing 44 XML Schema for xor-variation-type

OptionalVariation

+ condition :Expression [0..1]

StructuralVariationPoint

OptionalStructuralVariationPoint XorStructuralVariationPoint

XorVariation

+ condition :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

+variation 1..* +variation 1..*

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 82/87

<xor-structural-variationpoint id="vp1">

 <variation id="vp1v1" name="Alternative 1">

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

 <variation id="vp1v2" name="Alternative 2">

 <condition type="single-feature-condition">Feature2</condition>

 </variation>

 <variation id="vp1v3" name="Alternative 3">

 <condition type="single-feature-condition">Feature3</condition>

 </variation>

</xor-structural-variationpoint>

Listing 45 XML Example for xor-variation-type

4.28.1 Description

A XorVariation is a kind of variation that choses Variation out of several alternative

Variations.

 Let 𝑣 be a XorStructuralVariationPoint which and let 𝑠1, … , 𝑠𝑛 be the values of the

selected attributes of the XorVariations which are aggregated by 𝑣. Then the follow-

ing conditions shall hold:

1. ∃𝑖 ∈ {1, … , 𝑛}: 𝑠𝑖 = 𝑡𝑟𝑢𝑒

2. ∀𝑗 ∈ {1, … , 𝑛}, 𝑖 ≠ 𝑗: 𝑠𝑖 = 𝑓𝑎𝑙𝑠𝑒

4.28.2 Attribute condition

 When evaluated, the attribute condition of a XorVariation shall return a Boolean

value. That is, its datatype attribute (if present) should be a Boolean or a data type

which can be converted into a Boolean.

 Let 𝑐1, 𝑐2, … , 𝑐𝑛 be the conditions of all the XorVariations that are contained in a given

XorStructuralVariationPoint. Then the following conditions must hold

1. ∃𝑗 ∈ {1, … , 𝑛}: 𝑒𝑣𝑎𝑙(𝑐𝑗) = 𝑡𝑟𝑢𝑒

2. ∀𝑖 ∈ {1, … , 𝑛}, 𝑖 ≠ 𝑗: 𝑒𝑣𝑎𝑙(𝑐𝑖) = 𝑓𝑎𝑙𝑠𝑒

 If a XorVariation has an attribute condition 𝑐 and an attribute selected 𝑠 (inherited

from Variation), then the following condition shall hold:

𝑒𝑣𝑎𝑙(𝑐) = 𝑠

4.28.3 Binding

Each XorStructuralVariationPoint contains one or more XorVariations. When a

XorStructuralVariationPoint gets bound, the attribute condition of each XorVariation is

evaluated. For only one XorVariation the condition shall evaluate to 𝑡𝑟𝑢𝑒. For all other

XorVariations, the artifact elements that are referenced by its attribute

correspondingVariableArtifactElement (see section 4.21.3) get deleted or set to inac-

tive.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 83/87

 A XorStructuralVariationPoint can only be bound when all its ValueVariations have a

condition.

4.28.4 Notes

 The class XorVariation inherits from the class Variation.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 84/87

5 Example: Importing into pure::variants

<?xml version="1.0" encoding="UTF-8"?>

<variability-exchange-models id="root" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../VariabilityExchangeLanguage.xsd">

 <version>1</version>

 <capability>

 <import-variability-exchange-model>true</import-variability-exchange-model>

 <export-variability-exchange-model>true</export-variability-exchange-model>

 <get-configuration>true</get-configuration>

 <set-configuration>true</set-configuration>

 </capability>

 <variability-exchange-model type="variationpoint-description" id="spes">

 <xor-parameter-variationpoint id="vp1" name="VAR_DEMO_FAS_Distronic">

 <variation id="vp1v1" name="disabled">

 <value>0</value>

 </variation>

 <variation id="vp1v2" name="enabled">

 <value>1</value>

 </variation>

 </xor-parameter-variationpoint>

 <xor-parameter-variationpoint id="vp3" name="VAR_DEMO_FAS_EmergencyBrake">

 <variation id="vp3v1" name="disabled">

 <value>0</value>

 </variation>

 <variation id="vp3v2" name="enabled">

 <value>1</value>

 </variation>

 </xor-parameter-variationpoint>

 <xor-parameter-variationpoint id="vp4" name="VAR_DEMO_FAS_Repeater">

 <variation id="vp4v1" name="disabled">

 <value>0</value>

 </variation>

 <variation id="vp4v2" name="enabled">

 <value>1</value>

 </variation>

 </xor-parameter-variationpoint>

 <xor-parameter-variationpoint id="vp5">

 <variation id="vp5v1" name="disabled">

 <value>0</value>

 </variation>

 <variation id="vp5v2" name="enabled">

 <value>1</value>

 </variation>

 </xor-parameter-variationpoint>

 <xor-parameter-variationpoint id="vp6" name="VAR_DEMO_FAS_FollowToStop">

 <variation id="vp6v1" name="disabled">

 <value>0</value>

 </variation>

 <variation id="vp6v2" name="enabled">

 <value>1</value>

 </variation>

 </xor-parameter-variationpoint>

 <xor-parameter-variationpoint id="vp7" name="VAR_DEMO_FAS_Tempomat">

 <variation id="vp7v1" name="disabled">

 <value>0</value>

 </variation>

 <variation id="vp7v2" name="enabled">

 <value>1</value>

 </variation>

 </xor-parameter-variationpoint>

 </variability-exchange-model>

</variability-exchange-models>

Listing 46 The Automotive SPES Demonstrator as a Variability Exchange Language document

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 85/87

Figure 37 pure::variants model for the Automotive SPES Demonstrator from Listing 46.

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 86/87

<?xml version="1.0" encoding="UTF-8"?>

<variability-exchange-models id="root" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../VariabilityExchangeLanguage.xsd">

 <version>1</version>

 <capability>

 <import-variability-exchange-model>true</import-variability-exchange-model>

 <export-variability-exchange-model>true</export-variability-exchange-model>

 <get-configuration>true</get-configuration>

 <set-configuration>true</set-configuration>

 </capability>

 <variability-exchange-model type="variationpoint-description" id="model1">

 <special-data name="Metatdata">

 <data>

 <key>CreationDate</key>

 <value type="xs:date">2014-10-29</value>

 </data>

 </special-data>

 <optional-structural-variationpoint id="vp1">

 <variation id="vp1v1">

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

 </optional-structural-variationpoint>

 <xor-structural-variationpoint id="vp2">

 <corresponding-variable-artifact-element type="simulink">

 <simulink>42</simulink>

 </corresponding-variable-artifact-element>

 <variation id="vp2v1">

 <condition type="single-feature-condition">Feature2</condition>

 </variation>

 <variation id="vp2v2">

 <condition type="single-feature-condition">Feature3</condition>

 </variation>

 </xor-structural-variationpoint>

 <calculated-parameter-variationpoint id="vp3">

 <variation id="vp3v1">

 <expression type="pvscl-expression">6*9</expression>

 </variation>

 </calculated-parameter-variationpoint>

 <xor-parameter-variationpoint id="vp4">

 <variation id="vp4v1">

 <condition type="and-feature-condition">Feature10, Feature11</condition>

 <value>41</value>

 </variation>

 <variation id="vp4v2">

 <condition type="or-feature-condition">

 Feature 12,Feature13

 </condition>

 <value>42</value>

 </variation>

 <variation id="vp4v3">

 <condition type="or-feature-condition">Feature14,Feature15</condition>

 <value>43</value>

 </variation>

 </xor-parameter-variationpoint>

 <optional-structural-variationpoint id="vp5">

 <variation id="vp5v1">

 <condition type="single-feature-condition">Feature1</condition>

 </variation>

 </optional-structural-variationpoint>

 <optional-structural-variationpoint id="vp6">

 <variation id="vp6v1">

 <hierarchy id="vp6h1">

 <variationpoint ref="vp5"/>

 </hierarchy>

 <condition type="single-feature-condition">Feature2</condition>

 </variation>

 </optional-structural-variationpoint>

 <optional-structural-variationpoint id="vp7" name="Variationpoint7">

 <bindingtime selected="true">

 <name>compile-time</name>

 </bindingtime>

 <variation id="vp7v1" name="Variation 1 of Variationpoint7">

 <depencency type="requires" id="vp7v1d1">

 <variation ref="vp6v1"></variation>

 </depencency>

 <condition type="single-feature-condition">Feature7</condition>

 </variation>

 </optional-structural-variationpoint>

 </variability-exchange-model>

</variability-exchange-models>

Listing 47 A sample XML file illustrating various features of the Variability Exchange Language

The Variability Exchange Language

Last Change: 12/17/2015 1:33 PM 87/87

6 Bibliography

[1] SPES EC5, „Begriffsdefinitionen für die SPES EC 5,“ 2013. [Online]. Available:

https://svnbroy.informatik.tu-muen-

chen.de/spes_xt/EC_QT/EC5_WiederverwendungVarianten/2%20-

%20Arbeitsdokumente/Begriffsdefinitionen%20&%20Glos-

sar/EC5%20Begriffsdefinitionen.docx

[2] pure•systems GmbH, "pure::variants User's Guide," 2013. [Online]. Available:

http://www.pure-systems.com/

[3] RFC3986, “Uniform Resource Identifier (URI): Generic Syntax”

http://tools.ietf.org/html/rfc3986

[4] „Extensible Markup Language (XML) 1.1 (Second Edition),“ 2006. [Online].

Available: http://www.w3.org/TR/2006/REC-xml11-20060816/.

[5] pure•systems GmbH, "PVSCL", 2013. [Online]. Available: http://www.pure-sys-

tems.com/.

[6] The Internet Engineering Task Force RCF 2119,

https://www.ietf.org/rfc/rfc2119.txt

[7] Object Constraint Language, http://www.omg.org/spec/OCL/

[8] AUTOSAR, http://www.autosar.org/

https://svnbroy.informatik.tu-muenchen.de/spes_xt/EC_QT/EC5_WiederverwendungVarianten/2%20-%20Arbeitsdokumente/Begriffsdefinitionen%20&%20Glossar/EC5%20Begriffsdefinitionen.docx
https://svnbroy.informatik.tu-muenchen.de/spes_xt/EC_QT/EC5_WiederverwendungVarianten/2%20-%20Arbeitsdokumente/Begriffsdefinitionen%20&%20Glossar/EC5%20Begriffsdefinitionen.docx
https://svnbroy.informatik.tu-muenchen.de/spes_xt/EC_QT/EC5_WiederverwendungVarianten/2%20-%20Arbeitsdokumente/Begriffsdefinitionen%20&%20Glossar/EC5%20Begriffsdefinitionen.docx
https://svnbroy.informatik.tu-muenchen.de/spes_xt/EC_QT/EC5_WiederverwendungVarianten/2%20-%20Arbeitsdokumente/Begriffsdefinitionen%20&%20Glossar/EC5%20Begriffsdefinitionen.docx
http://www.pure-systems.com/
http://tools.ietf.org/html/rfc3986
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.pure-systems.com/
http://www.pure-systems.com/
https://www.ietf.org/rfc/rfc2119.txt
http://www.omg.org/spec/OCL/
http://www.autosar.org/

